
Calibrating an Overhead Video Camera

Raul Rojas

Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
http://www.fu-fighters.de

Abstract. In this section we discuss how to calibrate an overhead video
camera used for tracking robots moving on a rectangular field. First, the
radial distortion of the camera must be eliminated. The resulting cor-
rected image represents a projective transformation of the field’s surface
to the camera’s imaging plane. We show how to find the projective trans-
formation, and how to recover from this information the position of the
camera and the rotation of its coordinate system in relation to world’s
coordinates. We discuss the numerical errors which arise in the compu-
tations and how to find an optimal solution. We also show how to track
robots of different heights.

1 Overhead Camera calibration

In the RoboCup small-size league, mobile robots are tracked using one or more
video cameras overlooking the field from a height of three to four meters. The
image registered in each camera provides pixel information from which the po-
sitions of robots and other objects in the field can be computed. The robots
are marked with blobs of different colors. The geometry of the scene provides
all necessary information for tracking the robots, sometimes at 60 frames per
second.

Tracking the robots can be done best when the image from the video camera
is as undistorted as possible. However, once the video camera has been placed
above the field, there is no guarantee that the symmetry axis of the optics will
be pointing downwards perfectly. The camera’s coordinate system axis could
be misaligned with the coordinate system of the field (which we call “world
coordinates”). Also, wide angle lenses, necessary for capturing the field from
only 3 or 4 meters height, introduce a significant amount of radial distortion
in the image. The distance of objects to the center of the coordinate system is
underestimated sometimes by as much as 30% to 40%. It is necessary to correct
all these imaging artifacts before the coordinates of objects on the field can be
recovered.

This chapter provides all the necessary information for computing the best
camera-to-field coordinates transformation (so that we can infer from pixel data
where our robots are located), as well as the inverse field-to-camera transforma-
tion. We proceed as follows:

– We eliminate the radial distortion, calibrating the camera before it is used,
and applying a corrective transformation to the pixel’s coordinates,

2

– We find the projective transformation involved in the field-to-camera map-
ping and show how to recover the field coordinates of the robots using the
camera-to-field map.

– We show how to recover the coordinates of robots of different heights.

We also discuss some numerical problems and how to improve the results.

2 Radial distortion

Radial distortion is introduced by the camera optics and can be of pin-cushion
type, barrel type, or even a combination of both. In the pin-cushion distortion,
the distance of objects to the center of the image overestimates the real distance
in the world coordinate system,; in the second, the real distance is underesti-
mated. Both types of distortions are nonlinear, that is, the image of a rectangle
in world’s coordinates does not look like a rectangle in the image. Straight lines
are transformed by the lens into curved lines when radial distortion is present.

Radial distortion is a property of the camera optics. Most of the simple lenses
in use today (and many cheap video cameras use only those simple lenses) are
spherical. Spherical lenses are easy to grind and have been used for centuries. In
spherical lenses, an image is properly transformed (i.e. without distortion) only
when its maximum distance from the optical center is small (this means that
the angle of incidence of light rays is small). However, when the distance from
the center is large, the mapping object-to-image is not perfect anymore. Fig. 1
shows examples of radial distortion of a checkerboard pattern.

Fig. 1. Examples of barrel and pin-cushion distortion.

Barrel distortion arises when an iris is placed in front of the lens. If the iris is
behind the lens, pin-cushion distortion is produced. A pin-hole camera, with an
ideal point-like iris, does not need a lens and does not produce any distortion.
Many of the computations which follow have been made for a pinhole camera
and are not exact for cameras with different iris apertures. This should be kept
in mind, before we discuss the numerical errors in the computations. Fig. reffeld
shows the distorted image of the 2004 field in our lab, using a 4.2 mm lens and
with the camera at about 2.50 m above the field.

3

Fig. 2. Barrel distortion of the field with a 4.2 mm lens

The radial distortion of a lens can be assessed by taking a picture of concentric
circles centered at the origin. Fig. 3 shows concentric circles, each one of them
with a diameter larger by 1 cm than the diameter of the preceding circle (i.e.,
each successive ring is 1 cm wide). As Fig.3 shows, the image is compressed
towards the periphery – the circles seem to shrink more towards the origin the
farther away its boundary is.

From this picture it is relatively straightforward to compute the radial distor-
tion and to correct the image pixels. Since the lenses in the camera are radially
symmetric, the distortion is the same for any pixel at a distance r from the
image center. In barrel distortion the measured distance r is smaller than the
real distance r′, and the distortion is dr = r′/r. It follows that the coordinates
of a pixel (px, py) in the image can be corrected by just stretching the image by

the factor dr, where r =
√

(p2
x + p2

y), that is

(px, py) 7→ (drpx, drpy)

Of course a table of factors dr must be precomputed, or better yet, a function
relating r′ to r can be fitted using an image of known geometry.

Fig. 4 shows the radial distances of the circles borders extracted by a com-
puter program from Fig.3. plotted against the distances we should have obtained

4

Fig. 3. Barrel distortion produced by a 4.2 mm lens. Each ring is of the same width
but the camera distorts the pattern.

without radial distortion. The undistorted pixels distances are obtained by just
taking multiples of the distance between the center of the image and the first in-
ner circle’s border. As the plot shows, a measured distance of 450 pixels from the
origin corresponds to a distance of around 700 pixels without radial distortion.
The measured distance is therefore just 64% of the real distance.

Correcting the distortion can be done by computing the inverse of the dis-
tortion function. A polynomial can be used for this purpose. Let us assume that
the correction factor dr is a polynomial of the variable r, the measured distance
of a pixel to the origin. We can use polynomials up to order 3. Then

dr = a1r + a2r
2 + a3r

3.

Notice that there is no constant factor because there is no radial distortion at
the origin.

Fig. 5 shows the measured distorted points, plotted now in the x axis, and
the undistorted points in the y axis. A polynomial has been fitted to this data
(dots in the image). The coefficients, computed to double precision with Matlab,
are the following:

a1 = 1.07761103142178
a2 = −0.00096240306505
a3 = 0.00000401304361

Note that the large number of decimal places is needed because squaring pixel
coordinates produces very large values for r. Small numerical variations in the
coefficients a2 and a3 lead to very different results.

It is important to point out that since barrel distortion depends on the aper-
ture of the camera’s iris, the correction polynomial must be computed for exactly
the iris aperture later used for tracking the robots. If the iris aperture is changed,
the coefficients of the correction polynomial must change. If the iris leaves only

5

Fig. 4. Radial pixel distortion produced by a 4.2 mm lens

a very small opening, barrel distortion will be reduced (because the camera ap-
proaches the ideal situation of a pin-hole camera). If the iris is more open, barrel
distortion can increase. Fig. 6 shows the corrected image of the field, after com-
puting and eliminating the radial distortion with the camera settings used in
our lab.

3 Projective transformations

After radial distortion has been eliminated, the resulting image is still far from
perfect. The rectangular field appears as a trapezoid, due to the imperfect cen-
tering and alignment of the camera with respect to the field. In Fig. ?? we simply
connected with four lines the four corners of the field. The figure shows that there
is a certain residual error from the radial correction, and that the perspective
of the camera maps the rectangular field to a four sided polygon with sides of
different sizes. This is just a projective transformation of the field to the camera
imaging chip.

A projective transformation can be best explained with a pinhole camera
model. If a pinhole is located at the origin of the coordinate system, any line
through the origin intersects the projection plane of the camera (which we take
as the plane z = 1). A point with coordinates (x, y, z) and z 6= 0 is projected to
the point (x/z, y/z, 1). See Fig. 8.

The main problem for performing the projective transformation is to express
all coordinates of points to be projected in the coordinate system of the camera.
Assume that the camera is positioned at t = (cx, cy, cz). Assume that the camera
has its own coordinate system (we use primed variables to denote coordinates

6

Fig. 5. Radial distortion correction for a 4.2 mm lens

x′, y′, z′ relative to this camera system), which can be rotated with respect to the
world coordinate system (Fig.9. Let R be the 3D rotation matrix which describes
the rotation of the camera’s coordinate system relative to the directions of the
axis in the world coordinates .

We can find the relationship between the world coordinates of a point and
its mapping in the camera imaging plane at z′ = 1 as described next.

First, let us call the projective transformation of a point with coordinates
(x, y, z) to the point (x/z, y/z, 1), in any coordinate system, the function f1,
that is

f1((x, y, z)t) = (x/z, y/z, 1)t

A point (x, y, z) in world coordinates has other coordinates with respect to the
camera’s system. The change of coordinates under the rotation R and the trans-
lation t can be written as

(x′, y′, z′)t = R((x, y, z)t − t) = R(x, y, z)t −Rt

If all points we are mapping are on the floor, that is, if they have coordinate
z = 0, then transformation which describes the change of basis reduces to

(x′, y′, z′)t = (r1 r2 t′)(x, y, 1)t

where t′ = −Rt and r1, r2 are the first and second columns of the rotation
matrix R.

Composing the projective transformation with the change of coordinates we
have

(x′′, y′′, 1)t = f1((x′, y′, z′)t) = f1((r1 r2 t′)(x, y, 1)t)

7

Fig. 6. Corrected field image

We denote the matrix (r1 r2 t′) by H and we can write simply

(x′′, y′′, 1)t = f1(H(x, y, 1)t)

3.1 Mapping from image to field

Until now, we have explored how to transform points on the field to points on
the camera projection plane. Actually, what we really need when we are tracking
robots, is a transformation from the camera plane to field coordinates. We see
the robot, we want to know its coordinates on the field.

Given the camera coordinates of a point (x′′, y′′) we want to compute the
field coordinates (x, y). The mapping we need is just the inverse of the mapping
H (up to an scaling factor). Let us call the mapping from camera coordinates to
field coordinates the matrix G. We want this matrix to satisfy the mapping

(x, y, 1)t = G(x′′, y′′, 1)t

where (x′′, y′′, 1) are the homogeneous coordinates of the image point. Since we
know that

H(x, y, 1)t = (x′, y′, z′)t

8

Fig. 7. Corrected field image

and since x′′ = x′/z′ and y′′ = y′/z′, it follows that

H(x, y, 1)t = z′(x′, y′, 1)t

for a certain z′. It is then obvious that G = cH−1, where c is a proportionality
constant.

Therefore, it is not necessary to compute the matrix G once the matrix H
has been found. Any multiple of the inverse of H can be used. Since the matrix
G maps points in the camera to points on the field, projectively, any point of
the form (ρx, ρy, ρ)t is mapped to the same point (x, y, 1)t.

3.2 Recovering the transformation matrix

Given four points in the projection plane of a pin-hole camera which correspond
to four points in the projected plane of the field, it is possible to find the cor-
responding transformation matrix H, and from it we can recover the rotation
matrix R and the translation vector t.

Assume that four points on the field, with coordinates (x0, y0), (x1, y1), (x2, y2), (x3, y3)
are projectively mapped to four other points (x′′0 , y′′0 , 1), (x′′1 , y′′1 , 1), (x′′2 , y′′2 , 1), (x′′3 , y′′3 , 1)

9

Fig. 8. Projective transformation of three dimensional space to the plane z = 1

on the plane z′′ = 1, with respect to the pin-hole camera coordinate system. We
know from the equation above thatx′′

y′′

1

 = f1(H(x, y, 1)t) = f1

h11 h12 h13

h21 h22 h23

h31 h32 h33

x
y
1


Each one of the transformed points yields two linear equations involving the
unknown elements of H. The three equations are

x′ =
(
x y 1 0 0 0 0 0 0

)
h (1)

y′ =
(
0 0 0 x y 1 0 0 0

)
h (2)

z′ =
(
0 0 0 0 0 0 x y 1

)
h (3)

where h denotes the vector (h11, h12, h13, h21, h22, h23, h31, h32, h33)t. Since we
want to perform the projective transformation f1, we know that

x′′ = x′/z′ and y′′ = y′/z′

therefore
x′′z′ = x′ and y′′z′ = y′

From this we deduce that

x′′
(
0 0 0 0 0 0 x y 1

)
h =

(
x y 1 0 0 0 0 0 0

)
h

y′′
(
0 0 0 0 0 0 x y 1

)
h =

(
0 0 0 x y 1 0 0 0

)
h

10

Fig. 9. The world’s coordinate system and the camera’s coordinate system. The camera
is positioned at the point (cx, cy, cz) in world coordinates.

which we can rewrite as

(
x y 1 0 0 0 −x′′x −x′′y −x′′

)
h = 0(

0 0 0 x y 1 −y′′x −y′′y −y′′
)
h = 0

For the four points given above, we obtain the following eight equations:

x0 y0 1 0 0 0 −x′′0x0 −x′′0y0 −x′′0
0 0 0 x0 y0 1 −y′′0x0 −y′′0 y0 −y′′0
x1 y1 1 0 0 0 −x′′1x1 −x′′1y1 −x′′1
0 0 0 x1 y1 1 −y′′1x1 −y′′1 y1 −y′′1
x2 y2 1 0 0 0 −x′′2x2 −x′′2y2 −x′′2
0 0 0 x2 y2 1 −y′′2x2 −y′′2 y2 −y′′2
x3 y3 1 0 0 0 −x′′3x3 −x′′3y3 −x′′3
0 0 0 x3 y3 1 −y′′3x3 −y′′3 y3 −y′′3


h = 0

The system of equations can be solved setting h33 = 1, then the last column of
the above matrix can be moved as a vector to the right of the equal sign, and
the first eight linear equations can be solved to find the value of the rest of the
elements. Note that any multiple of the vector h is a solution to the original
system of equations. The solution we compute is correct up to a scaling factor
λ.

11

3.3 Recovering the rotation matrix

Given four points in the image and their known coordinates in the world, the
matrix H can be recovered, up to a scaling factor λ. We know that the first
two columns of the rotation matrix R must be the first two columns of the
transformation matrix. Let us denote by h1, h2, and h3 the three columns of
the matrix H.Due to the scaling factor λ we then have that

λr1 = h1

and
λr2 = h2

Since |r1| = 1, then λ = |h1|/|r1| = |h1| and λ = |h2|/|r2| = |h2|. We can thus
compute the factor λ and eliminate it from the recovered matrix H. We just set

H′ = H/λ

In this way we recover the first two columns of the rotation matrix R.
The third column of R can be found remembering that any column in a rota-

tion matrix is the cross product of the other two columns (times the appropriate
plus or minus sign). In particular

r3 = r1 × r2

Therefore, we can recover from H the rotation matrix R. We can also recover
the translation vector (the position of the camera in field coordinates). Just
remember that

h′
3 = −Rt

Therefore the position vector of the camera pin-hole t is given by

t = −R−1h′
3

3.4 Mapping into the camera chip

The analysis above is correct when the camera captures the image at the plane
z = 1 and when the camera uses the same image units as those used in the world
coordinate system. However: a) the camera projects the image to a chip located
at the position z = f from the pin-hole, and b) the image is addressed using
pixels and not meters .

The correction needed is small. A point (x′′, y′′, 1) in the camera coordinate
system is projected to the plane z′′ = f , just multiplying the point coordinates
with f , that is,

(x′′, y′′, 1)t 7→ (fx′′, fy′′, f)t

If the correspondence between meters and pixels is given by the factor δ, and if
the pixels are quadratic, then the pixel coordinates of the transformed point are

(p′′x, p′′y)t = (δfx′′, δfy′′)t

12

We call the factor δf just φ. Then

(x′′, y′′)t 7→ (φx′′, φy′′)t

Define the camera matrix K as

K =

φ 0 0
0 φ 0
0 0 1


then the complete world coordinates to image projective projection is given byp′′x

p′′y
1

 = Kf1(H(x, y, 1)t)

We can apply the method deduced in the previous section just by pre-transforming
pixel coordinates into meter coordinates:x′′

y′′

1

 = K−1

p′′x
p′′y
1

 = f1(H(x, y, 1)t)

When tracking the robots we want to go from pixel coordinates to field
coordinates. We can just operate on the equation above, inverting the function
f1. This function has not really an inverse, because a projective transformation
maps a whole line to a point. But it is true that if (u, v, 1)t = f1((x, y, z)t) then
k(u, v, 1)t = (x, y, z)t for some constant k. In our case we can write

kK−1

p′′x
p′′y
1

 = H(x, y, 1)t

and therefore

kH−1K−1

p′′x
p′′y
1

 = (x, y, 1)t

Applying f1 again we obtain

f1

H−1K−1

p′′x
p′′y
1

 = (x, y, 1)t

The mapping from pixel coordinates to field coordinates is complete.

3.5 Numerical errors

In the previous sections we have learned that having the correspondence of four
points on the field and four points on the image allows us to recompute the

13

transformation matrix, and from it, the rotation matrix R and the position of
the camera’s pinhole. The four points must be independent (that is, they should
be in general position). No one of them should be on a line connecting other
two. Otherwise the linear equations are not independent and we cannot solve
the system in order to find H.

A straightforward application of these ideas to real images produces some
puzzling numerical errors. The norm of the two first columns of H is not equal,
as it should be. Remember that the norm of each column should be one, times
a scaling factor λ. Therefore, two different scaling factors are possible, one com-
puted from each column. The difference is very small for real images, but picking
any one of the two alternatives leads to columns of the rotation matrix R which
are inconsistent. The computation of the rotation angles, for example, can lead
to imaginary solutions when one asks the computer to find arccos(1.01), for
example.

There is an easy fix to this dilemma: just pick as λ the maximum of the norm
of h1 and h2. In this way at least the angles computed from the reconstructed
rotation matrix are real and not imaginary. The next section explores a better
solution.

A bigger problem is the correct value of the constant φ. This value must
be measured directly. Bars of known length can be observed with the camera
at fixed and known distances from it. From this measurements it is possible to
compute the correspondence meters to pixels, from the plane at z = 1. However,
the measurement is error prone and this introduces a further source of numerical
anomalies. Remember that φ is used at the beginning to transform from pixels
to meters. Any numerical error in φ affects the whole computation.

3.6 Correcting the numerical errors

One improvement for the computation of λ and the rotation matrix is to find
the best set of rotation angles and the best λ which can explain the computed
transformation matrix.

We did the following. A 3D rotation matrix R has the following form (where
the functions s and c are the sine and cosine function, respectively)

R =

(
c(β)c(γ) c(β)s(γ) −s(β)

s(α)s(β)c(γ)− s(γ)c(α) s(α)s(β)s(γ) + c(α)c(γ) s(α)c(β)
c(α)s(β)c(γ) + s(α)s(γ) c(α)s(β)s(γ)− s(α)c(γ) c(α)c(β)

)

where α, β, γ are the rotation angles. We know that the first two columns of
H are equal to the first two columns of R, times an unknown factor λ. We can
proceed iteratively by assigning a value to the angles α, β and γ, and also to
λ (for example 1.0 in this last case). From the values of the angles we obtain a
rotation matrix R. We then compute the sum of the quadratic norm of differences

E = |h1

λ
− r1|2 + |h1

λ
− r1|2

14

If E > 0 then we compute the partial derivatives of E with respect to all four
parameters α, β, γ, and λ. We correct the parameters using gradient descent
and iterate again. We repeat this procedure until E is sufficiently small.

We performed this iterative computation for a real matrix captured by a
camera in our lab. Fig. ?? shows the gradual reduction in the error. The calcu-
lation was not optimized for speed. A good initialization of the angles (using for
example as λ the maximum of the norm of the two first columns of H) greatly
reduces the numbers of iterations.

Perhaps more relevant is the fact that we computed the height of our camera
using the direct approach and then we did the same computation using the
iterative procedure just described. With the first uncorrected method, the height
is computed to be x meters, with the second it is y meters, a difference of x cm.
Our own measurement gave a number very near to , within the limits of our
measuring precision.

4 Mapping for a certain robot height

The above analysis was done based in the premise that we are mapping points
on the floor to the camera chip. If we are mapping the covers of the robots to the
field, and since the robots have a certain height, we must necessarily introduce
a correction in the matrix H′.

The needed correction is easy to compute noting that if the robot has height
`, the camera is then located at a height cz − ` from the horizontal plane at the
robots’ cover. The rotation of the camera’s coordinate system has not changed,
and therefore the new matrix H′ must have almost the same structure. The first
two columns are still the first two columns of the rotation matrix R, which has
not changed. The last column h′

3 is, according to what we showed above

h′
3 = R(t− (0, 0, `)t)

but then
h′

3 = h3 −R(0, 0, `)t)

and this is equal to
h′

3 = h3 − r3`

The new matrix H′ is just
H′ = H− r3`

5 Experimental results

References

1.

