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Abstract. This paper discusses the differences and advantages of some
color spaces from the viewpoint of robotics applications. Starting from
the canonical RGB space, we look at the various definitions of alternative
spaces such as YUV, HSI, HSV, etc. We provide graphical representations
for the magnitudes used in color spaces, which should give an intuitive
understanding of their usefulness and relationship.

1 Color spaces

Digital cameras usually detect color using filters in front of each pixel in the
imaging chip. This arrangement mimics the way the human eye detects light of
different wavelengths using cells shaped like cones, and which are preferentially
sensitive to light around red, green, or blue monochromatic light. Whatever the
method used to detect light in the color camera, the most common encoding
of color information in the computer is the RGB color space, in which a color
is represented by the amount of primary red (R), green (G), and blue (B) it
“contains”. In this section we review some alternative color spaces and their
relationship to the canonical RGB space.

A color space is a way of encoding color using several color components. The
purpose of color encoding is to allow the decoder (that is, a TV, computer
monitor, or printer) to reproduce the appearance of the original color so as to
meet the expectations of the human eye. That is, a printed photograph should
look as real as the scene it captures. Originally, color spaces were defined for TV
broadcasting since this decoder is much older than computers. This is a difficulty
we will encounter with almost all color spaces: they were not originally defined
for robots or pattern recognition, but for human entertainment.



2

1.1 RGB color space

Colors in RGB space have three coordinates. RGB space can be represented
by a cube with an axis for each primary color, normalized between 0 and 1. A
usual representation in computers is 24-bit RGB, in which each primary color is
encoded using 8 bits (the integer coordinate runs between 0 and 255, which can
be interpreted as a value between 0/255 and 255/255). Fig. 1 shows the RGB
color space cube.

Fig. 1. The front and back of RGB color space

Pure red has the coordinates (1, 0, 0) in the cube, pure green (0, 1, 0), and pure
blue (0, 0, 1). Other corners of the RGB cube are magenta, cyan, and yellow,
which correspond to the color mixtures (1,0,1), (0,1,1), and (1,1,0). These colors
can be also used as the basic colors and their mixture can produce any of the
other colors. However, there is an important difference. A given color (x, y, z) in
the RGB color cube can be reproduced as

(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1)

which represents an additive mixture of red, green, and blue (since x, y, and z
are positive and less than 1). This is the kind of color mixing we obtain from
LCD projectors. In color TVs, additive color mixes are used, since light of one
color emitted by the screen does not cancel light of another color emitted also
by the screen.

In subtractive color mixing, such as the one used for printing, ink reflects a
specific color mixture and the color reflected by two layers of ink is the compo-
nentwise product of their reflectivities (in a very abstract model). Therefore, red
can be represented as

(1, 0, 0) = (1, 0, 1)	 (1, 1, 0)

that is, as the subtractive combination of magenta and yellow. Magenta (1, 0, 1)
absorbs the green component, while yellow (1, 1, 0) absorbs the blue component,
so that only the red component remains when we mix both colors.
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In additive color mixtures red, green, and blue together produce white, since
(1, 1, 1) = (1, 0, 0) + (0, 1, 0) + (0, 0, 1). In subtractive color mixtures magenta,
cyan, and yellow produce black. The figure below shows the difference between
additive and subtractive color mixtures.

Fig. 2.

2 Linear transformations of the RGB color space

Color processing in the brain actually combines the individual measurements at
each rod and cone in the retina in a complex manner. Color spaces are transfor-
mations of the RGB cube designed with the purpose of best capturing the kind
of color classification done by humans. There are many different color spaces,
each with its own rationale.

The first kind of alternative color spaces are linear transformations of the RGB
cube. One important example is the YUV color space. In this space Y refers
to the perceived intensity of a color. Separating the intensity component from
the chromatic components allows us to broadcast video images with each pixel
encoded as three numbers, the YUV coordinates. A black and white TV, for
example, just decodes the Y component and produces a picture. Psychophysical
measurements of the perceived intensity of colors has led to many proposals for
the perceived intensity of colors (which is also very variable between humans).
The formula used is

Y = 0.299R + 0.587G + 0.114B.

Green has a higher weight than red, and almost five time higher than blue. The
human eye contains just 2% of blue cones, but they are more sensitive than the
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green cones, so that final weighting must be obtained from actual experiments.
The U and V components are obtained from the following expressions

U = c1(B − Y ) = −0.169R− 0.332G + 0.500B + 128

and
V = c2(R− Y ) = 0.500R− 0.419G− 0.0813B + 128

whwre c1 and c2 are normalizations constants adjusted to obtain the coefficient
0.5 in front of the blue component (in the first equation), and of the red com-
ponent (in the second ecuation), and where the variables R, G, and B run from
0 to 255. The constant 128 is added to avoid negative U and V values.

Since the human eye is more sensitive to changes in illumination than color, many
video cameras provide a Y value for every pixel, and U and V values for every
two or every four pixels. For example, YUV 4:2:2 refers to a video signal with
factor two undersampling in each row of the video image. This saves bandwidth
in the transmission of the image from the video camera to the computer.

Fig. ?? shows the transformed RGB cube of colors. The Y axis is the new
direction of the black to white colors.

3 Nonlinear transformations

Nonlinear transformations of the RGB cube are based on the same idea: to
separate the measurement of the light intensity from the chromatic information.
The main difference is the definition of the intensity and the distance from the
intensity axis.

3.1 Intensity – Projection on a sphere, a plane, a cube, other
surfaces

The color receptors in the human eye record the relative mixtures of wavelengths
present in light meeting the human eye. The mixture is up to certain point
independent of the intensity of the light. That is, doubling the light registered
by the red, green, and blue receptors modifies our perception of the luminosity
of an object, but not of its hue. We do not expect objects to change color just
because we dim the lights.

If we assume that a color (r, g, b) is perceptually equivalent to a color (αr, αg, αb),
where α is a positive constant, then any ray (αr, αg, αb) represents the same
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color. If for any such ray we represent a color by the intersection of this ray
with a sphere of radius 1, then all colors can be mapped to the surface of this
sphere in the octant of positive values for r,g, and b, as shown in Fig. 3. There
is a one-to-one correspondence between this 2D representation and each color.
In this case intensity is defined as

I1 =
√

R2 + G2 + B2)

I1 can be also divided by sqrt3 if white is normalized to intensity 1. If we use
the Manhattan metric for measuring the length of the RGB vector, we can map
each ray to the plane with coordinates R + G + B = 1 (Fig. 3, middle). The
definition of intensity, in this case, is

I2 = (R + G + B)

I2 can be dividided by 3 if white is normalized to intensity 1. Another possibility
is to map each ray (each color) to the intersection of the ray with the sides of
the RGB cube. In this case the definition of intensity changes to

I3 = max(R,G,B)

Fig. 3 (right) shows this alternative projection. Any of these definitions of inten-
sity is possible and mathematically equivalent from the point of view of obtaining
a reversible transformation (as we see below).

Fig. 3. Projection of a color ray to the surface of a sphere (radius 1), the plane R +
G + B = 1, and the surface of the RGB cube.

An interesting alternative for defining the intensity is the formula:

I4 =
max(R,G,B) + min(R,G,B)

2
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We can graph the surfaces of iso-luminosity when this formula is used. Fig. 4
shows the result. The surfaces for luminosity 0.8, 0.4, and 0.2 are represented.
Each isoluminosity surface is parallel to each other. The surface is a patch of six
planes which meet at the black-white diagonal. The result is similar to that ob-
tained with the Manhattan metric but the spacing of the surfaces of isointensity
is more regular.

Fig. 4. Surfaces of equal luminosity (0.8, 0.4, and 0.2) for I = (max(R, G, B) +
min(R, G, B))/2

Given the surface used for the projection of a color ray, we can now define a
2D system of coordinates on this surface. One of the coordinates is very simple
to define: the angle of the projection around the diagonal joining black with
white (the line from (0, 0, 0) to (1, 1, 1)). Many color spaces use this definition of
“hue. If we look at any of the projections explained above, aligning the center of
our eye or camera with the vector (1, 1, 1), the different colors change when we
turn around the center of the image. From the center of the image to the sides,
the colors become more vivid. The diagonal corresponds to colors of the type
(α, α, α), that is colors with equal contributions of red, green, and blue, that is
shades of white (gray values). The farther away a color is from the diagonal, the
more vivid it looks. This is the ‘saturation of the color, which can be measured
in different but related ways, as we see below.

3.2 HSI and HSV color space

In HSI color space, H stands for hue, S for saturation, and I for intensity. V stands
for value in HSV color space. HSI and HSV are “families” of color spaces rather
than well-defined monolithic spaces. A review of the literature immediately shows
that under HSI many alternative definitions of hue, saturation, and intensity
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are used. The same goes for HSV, so that we should really understand the
alternatives and think of HSI and HSV as clusters of related color spaces.

In the HSI and HSV families several definitions of saturation are used. The
general idea is to assign saturation 1 to the primaries red, green, and blue, and
saturation zero to gray levels, interpolating for intermediate colors. There are at
least the following alternative definitions of saturation:

S1 =
max(R,G,B)−min(R,G,B)

max(R,G,B)

or

S2 =
max(R,G,B)−min(R,G,B)
max(R,G,B) + min(R,G,B)

or

S3 = 1− 3
min(R,G,B)
R + G + B

or
S4 = d((R,G,B), (1, 1, 1))

where the function d computes the normalized Euclidean distance between the
point (R,G,B) and the line from the origin to (1,1,1) (the distances are normal-
ized so that pure red, green, and blue have saturation 1).

In order to implement this kind of computation we need to rotate first the system
of coordinates using the transformation
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We then compute

S4 =
√

m2
1 + m2

2

The intensity can be computed also directly from the above transformation as
I2 =

√
3 · i1

In the first three cases S1, S2, and S3 the saturation for pure red, green, and
blue is 1. With the definition of S4, however, it is sqrt2/sqrt3, a little less than
1. For any shade of gray R = G = B, and therefore S1 = S2 = S3 = S4 = 0.
The different definitions of saturation yield sometimes different values for cyan,
magenta, and yellow. For cyan, which corresponds to (0, 1, 1), for example, S1 =
S2 = S3 = 1, but S4 = sqrt2/sqrt3
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Fig. 5 show the surfaces of isosaturation for S1 and S2. The surfaces of isosat-
uration for S4 are cylinders with axis parallel to the black-white diagonal. The
isosaturation curves for S1 and S2 look like “cones” with planar boundaries
(six planes). The isosaturation surfaces for S2 are not as symmetrical as for S1.
They assign, in general, less saturation to colors along the diagonals from the
black-white line to cyan, magenta, and yellow.

Fig. 5. Regions of isosaturation in the RGB cube, according to two different definitions
of the saturation. The upper diagrams show the isosaturation surfaces for S1, the two
lower diagrams correspond to S2.

Fig. 7 shows the isosaturation surfaces for S − 2. They are very similar to the
surfaces for S1 but are more unformly spaced.

3.3 The hue

Whatever the definition of the intensity I and the saturation S, the hue is
measured using the angle around the black-white diagonal. One of the axis has
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to be taken as the reference for zero degrees, for example, the red axis.

H1 =


(0 + (G−B)

max−min ) · 60 if R = max

(2 + (B−R)
max−min ) · 60 if G = max

(4 + (R−G)
max−min ) · 60 if B = max

Fig. 7 shows the kind of computation which results from the formula above. In
the figure we are looking to the RGB cube along the black-white diagonal. There
are six regions, for each of them the maximum and minimum coordinate has been
written. Outside the hexagon (projection of the RGB cube on the plane) we see
the computation performed for finding the hue. The computation, when R is the
maximum coordinate, yields values from −1 to 1. The same occurs when B or
G are the maximum. But when G is the maximum we add 2, and when B is
the maximum we add 4. So the computations yield values which run from −1 at
angle −60 degrees up to 1 at 60 degrees, 2 at 120 degrees, 3 at 180 degrees, 4 at
240 degrees, and 5 at 300 degrees. Multiplying by 60 we obtain angles running
from −60 to 300 degrees, that is, the whole circumference.

The computation of the angle between the axis for pure red and the vector
(r, g, b) for a color is the same for all rays (r, g, b)+α(1, 1, 1), since maximum and
minimum do not change, and the subtractions in the numerator and denominator
of the expression for H1 eliminate all α. This shows that the computation is
consistent when we look at the RGB cube along the black-white diagonal.
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Fig. 7.

An exact computation of the angle would require the use of the arccos, or an-
other trigonometric function. Instead, in the computation for H1, the angle is
interpolated using the six axes visible in Fig. 7. The computation is very simple
for the periphery of the cube (max= 1, min= 0). The triangle to the right of
Fig. 7 shows how the hues corresponding to 0, 10, 20, . . . , 60 degrees are found,
just dividing the side of the equilateral triangle in six equal segments. Of course,
the lines do not correspond to the exact position of 0, 10, 20, . . . , 60 degrees, but
are very near. This kind of computation avoids using an expensive trigonometric
function.

Another option is to measure exactly the angle around the black-white line. In
this case we use the transformation given by Eq. ??, and compute the hue as:

H2 = arctan
(

m1

m2

)
where the arctan function returns the appropriate value between 0 and 360
degrees, according to the signs of m1 and m2.

In this definition of hue (based on the cylindrical cooordinates of the transformed
points after applying the transformation ??, a point (r, g, b) has the same hue,
and the same saturation S4 as any other point (r, g, b) + α(1, 1, 1) (since the
transformation of α(1, 1, 1) yields m1 = m2 = 0, and we have a linear trans-
formation). This definition of hue combined with S4 and I2 = (R + G + B)/3
corresponds to just a transformation from Cartesian to cylindrical coordinates.
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Still a third alternative for the definition of the hue is the formula

H3 = cos−1

(
(R−G) + (R−B)

2
√

(R−G)2 + (R−B)(G−B))

)
For pure red we obtain H3 = 0 degrees, for pure green H3 = 120 degrees, and
for pure blue H3 = 240 degrees. This is, in principle, the same computation as
H2 but for a rotated system of coordinates.

3.4 Combinations of I, S, and H

As we saw in the previous sections, there are many alternative definitions for
intensity and saturation. Even the hue can be measured differently if we use the
arccos function to compute the polar angle for a system of coordinates, or if we
interpolate linearly using predefined angles for the red, green, and blue axis.

Any combination of I, S, and H qualifies as a color space. However, why should
we prefer one color space over another? If the color mapping from RGB to a new
color space is reversible, all such color spaces are equivalent, if our only goal is
to encode colors.

Frequent combinations found in the literature are:

– HSI, as I2, S3, and H2.
– HSI, as I2, S4, and H2.
– HSV as I3, S1, and H1.

There is an important aspect which must be considered when comparing color
spaces, which is the metric we can use to compare two colors. Given the coor-
dinates of two colors in a three-dimensional color space, such as RGB or HSI,
we would like to be able to compare them using their Euclidean distance in the
given color space. The question is if “similar” colors in the selected color space
also look similar for humans. Or if the computer finds that two colors are near,
according to their coordinates, are they indistinguishable for a human? If so,
they could be classified as the same color for the purpose of segmenting visual
scenes.

All these questions boil down to the question of finding a color space in which
color comparisons can be done with an Euclidean metric, which is convenient and
easy to implement. However, it is known that the human eye has different color
resolutions in different parts of the RGB cube. This kind of questions have been
studied by the CIE (Commision Internationale de l’Eclaraige) who has proposed
several color spaces over the years.
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Fig. 8.
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