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Abstract. This paper provides a gentle introduction to the Kalman filter,

a numerical method that can be used for sensor fusion or for calculation of

trajectories. First, we consider the Kalman filter for a one-dimensional system.

The main idea is that the Kalman filter is simply a linear weighted average of

two sensor values. Then, we show that the general case has a similar structure

and that the mathematical formulation is quite similar.

1. An example of data filtering

The Kalman filter is widely used in aeronautics and engineering for two main
purposes: for combining measurements of the same variables but from different
sensors, and for combining an inexact forecast of a system’s state with an inexact
measurement of the state. The Kalman filter has also applications in statistics and
function approximation.

When dealing with a time series of data points x1, x2, . . . , xn, a forecaster com-
putes the best guess for the point xn+1. A smoother looks back at the data, and
computes the best possible xi taking into account the points before and after xi. A
filter provides a correction for xn+1 taking into account all the points x1, x2, . . . , xn

and an inexact measurement of xn+1.
An example of a filter is the following: Assume that we have a system whose

one-dimensional state we can measure at successive steps. The readings of the
measurements are x1, x2, . . . , xn. Our task is to compute the average µn of the
time series given n points. The solution is

µn =
1

n

n
∑

1

xi.

If a new point xn+1 is measured, we can recompute µn, but it is more efficient to
use the old value of µn and make a small correction using xn+1. The correction is
easy to derive, since

µn+1 =
1

n + 1

n+1
∑

1

xi =
n

n + 1

(

1

n

n
∑

1

xi +
1

n
xn+1

)

and so, µn+1 can be written as

(1.1) µn+1 =
n

n + 1
µ +

1

n + 1
xn+1 = µ + K(xn+1 − µ)

where K = 1/(n + 1). K is called the gain factor. The new average µn+1 is a
weighted average of the old estimate µn and the new value xn+1. We trust µn more
than the single value xn+1; therefore, the weight of µn is larger than the weight
of xn+1. Equation 1.1 can be also read as stating that the average is corrected
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using the difference of xn+1 and the old value µn. The gain K adjusts how big the
correction will be.

We can also recalculate recursively the quadratic standard deviation of the time
series (the variance). Given n points, the quadratic standard deviation σn is given
by:

σ2
n =

1

n

n
∑

1

(xi − µ)2.

If a new point xn+1 is measured, the new variance is

σ2
n+1 =

1

n + 1

n+1
∑

1

(xi − µn+1)
2 =

1

n + 1

n+1
∑

1

(xi − µn − K(xn+1 − µn)2)

where K is the gain factor defined above and we used Equation 1.1. The expression
above can be expanded as follows:

σ2
n+1 =

1

n + 1

[

n
∑

1

(xi − µn)2 + 2K

n
∑

1

(xi − µn)(xn+1 − µn) + nK2(xn+1 − µn)2 + (1 − K)2(xn+1 − µn)2

]

The second term inside the brackets is zero, because
∑n

1 (xi − µn) = 0. Therefore,
the whole expression reduces to

σ2
n+1 =

1

n + 1
(nσ2

n + (xn+1 − µ)2(nK2 + (1 − K)2).

Since nK2 + (1 − K)2 = nK the last expression reduces to

σ2
n+1 =

n

n + 1
(σ2

n + K(xn+1 − µ)2) = (1 − K)(σ2
n + K(xn+1 − µ)2).

The whole process can now be casted into as a series of steps to be followed
iteratively. Given the first n points, and our calculation of µn and σn, then

• When a new point xn+1 is measured, we compute the gain factor K =
1/(n + 1).

• We compute the new estimation of the average

µn+1 = µn + K(xn+1 − µ)

• We compute also a provisional estimate of the new standard deviation

σ′2
n = σ2

n + K(xn+1 − µ)2

• Finally, we find the correct σn+1 using the correction

σ2
n+1 = (1 − K)σ′2

n

This kind of iterative computation is used in calculators for updating the average
and standard deviation of numbers entered sequentially into the calculator without
having to store all numbers. This kind of iterative procedure shows the general
flavor of the Kalman filter, which is a kind of recursive least squares estimator for
data points.



THE KALMAN FILTER 3

Figure 1. Gaussians

2. The one-dimensional Kalman Filter

The example above showed how to update a statistical quantity once more in-
formation becomes available. Assume now that we are dealing with two different
instruments that provide a reading for some quantity of interest x. We call x1 the
reading from the first instrument and x2 the reading from the second instrument.
We know that the first instrument has an error modelled by a Gaussian with stan-
dard deviation σ1. The error of the second instrument is also normally distributed
around zero with standard deviation σ2. We would like to combine both readings
into a single estimation.

If both instruments are equally good (σ1 = σ2), we just take the average of both
numbers. If the first instrument is absolutely superior (σ1 << σ2), we will keep x1

as our estimate, and vice versa if the second instrument is clearly superior to the
first. In any other case we would like to form a weighted average of both readings
to generate an estimate of x which we call x̂.

The question now is which is the best weighted average. One possibility is
weighting each reading inversely proportional to its precision, that is,

x̂ =

x1

σ2
1

+ x2

σ2
2

1
σ2
1

+ 1
σ2
2

or simplifying

x̂ =
x1σ

2
2 + x2σ

2
1

σ2
1 + σ2

2

This estimation of x̂ fulfills the boundary conditions mentioned above.
Note that the above estimate can be also rewritten as

x̂ = x1 + K(x2 − x1)

where now the gain K = σ2
1/(σ2

1 + σ2
2). The update equation has the same general

form as in the example in Section 1.
The expression used above is optimal given our state of knowledge about the

measurements. Since the error curve from the instruments is a Gaussian, we can
write the probability of x being the right measurement as

p1(x) =
1

√
2πσ1

e−
1
2 (x−x1)

2/σ2
1

for instrument 1, and as

p2(x) =
1

√
2πσ2

e−
1
2 (x−x2)

2/σ2
2

for instrument 2. In the first case, x1 is the most probable measurement, in the
second, x2, but all points x have a non-vanishing probability of being the right
measurement due to the instruments’ errors.
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Since the two measurements are independent we can combine them best, by
multiplying their probability distributions and normalizing. Multiplying we obtain:

p(x) = p1(x)p2(x) = Ce−
1
2 (x−x1)

2/σ2
1−

1
2 (x−x2)

2/σ2
2

where C is a constant obtained after the multiplication (including the normalization
factor needed for the new Gaussian).

The expression for p(x) can be expanded into

p(x) = Ce
−

1
2 (( x

2

σ
2
1
−

2xx1
σ
2
1

+
x
2
1

σ
2
1
)+( x

2

σ
2
2
−

2xx2
σ
2
2

+
x
2
2

σ
2
2
))

which grouping some terms reduces to

p(x) = Ce
−

1
2 (x2( 1

σ
2
1
+ 1

σ
2
1
)−2x(

x1
σ
2
1
+

x2
σ
2
2
))+D

where D is a constant. The expression can be rewritten as

p(x) = Ce
−

1
2 (

σ
2
1+σ

2
2

σ
2
1σ

2
2

(x2
−2x(

x1σ
2
2+x2σ

2
1

σ
2
1+σ

2
2

)))+D
.

Completing the square in the exponent we obtain:

p(x) = Fe
−

1
2

σ
2
1+σ

2
2

σ
2
1σ

2
2

[

x−
(x1σ

2
2+x2σ

2
1)

σ
2
1+σ

2
2

]2

where all constants in the exponent (also those arising from completing the square)
and in front of the exponential function have been absorbed into the constant F .

From this result, we see that the most probable result x̂ obtained from combining
the two measurements (that is, the center of the distribution) is

x̂ =
(x1σ

2
2 + x2σ

2
1)

σ2
1 + σ2

2

and the variance of the combined result is

σ̂2 =
σ2

1σ
2
2

σ2
1 + σ2

2

If we introduce a gain factor K = σ2
1/(σ2

1 +σ2
2) we can rewrite the best estimate

x̂ of the state as

x̂ = x1 + K(x2 − x1)

and the change to the variance σ2
1 as

σ̂ = (1 − K)σ2
1

This is the general form of the classical Kalman filter.
Note that x1 does not need to be a measurement. It can be a forecast of the

system state, with a variance σ2
1 , and x2 can be a measurement with the error

variance σ2
2 . The Kalman filter would in that case combine the forecast with the

measurement in order to provide the best possible linear combination of both as
the final estimate.
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3. Multidimensional Kalman Filter - uncorrelated dimensions

We can generalize the result obtained above to the case of multiple dimensions,
when every dimension is independent of each other, that is, when there is no cor-
relation between the measurements obtained for each dimension. In that case the
measurements x1 and x2 are vectors, and we can combine their coordinates inde-
pendently.

In the case of uncorrelated dimensions, given measurements x1 and x2 ( vectors
of dimension n), the variances for each dimension can be arranged in the diagonal
of two matrices Σ1 and Σ2, as follows:

Σ1 =









σ2
11 0 · · · 0
0 σ2

12 · · · 0
0 0 · · · 0
0 · · · 0 σ2

1n









and

Σ2 =









σ2
21 0 · · · 0
0 σ2

22 · · · 0
0 0 · · · 0
0 · · · 0 σ2

2n









where σ2
1i represents the variance of the i-th coordinate for the first instrument,

and σ2
2i the variance of the i-th coordinate for the second.

The best estimate for the system state is given by

x̂ = (Σ2x1 + Σ1x2)(Σ1 + Σ2)
−1

Introducing the gain K = Σ1(Σ1 + Σ2)
−1, we can rewrite the expression above as

x̂ = x1 + K(x2 − x1)

and the new estimate of all variances can be put in the diagonal of a matrix Σ̂
computed as

Σ̂ = (I − K)Σ1

where I is the n × n identity matrix. The reader can verify all these expressions.
The matrices Σ1 and Σ2 are the covariance matrices for the two instruments.

In the special case of uncorrelated dimensions, the covariance matrix is diago-
nal. Remember that the covariance matrix Σ for m n-dimensional data points
x1, x2, . . . , xm is defined as

Σ =
1

n
(x1x

T
1 + x2x

T
2 + · · · + xmxT

m).

4. The general case

The general case is very similar to the one-dimensional case. The mathematics
is almost identical, but now we have to operate with vectors and matrices.

Given two n-dimensional measurements x1 and x2, we assume that the two
instruments that produced them have a normal error distribution. The first mea-
surement is centered at x1 with covariance matrix Σ1. The second is centered at
x2 with covariance matrix Σ2. The first distribution is denoted by N(x1,Σ1), the
second by N(x2,Σ2)
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If the two instruments are independent, the combined distribution is the product
of the two distributions. The product of two normalized Gaussians, after normal-
ization, is another normalized Gaussian. We only have to add the exponents of the
two Gaussians in order to find the exponent of the new Gaussian. Any constants
in the exponent can be moved out of the exponent: they can be converted to con-
stants in front of the exponential function, which will be later normalized. The new
distribution is N(x̂, Σ̂).

Remember that in a Gaussian with center µ and covariance matrix Σ, the expo-
nent of the Gaussian is − 1

2 (x − µ)T Σ−1(x − µ).
The sum of the exponents of the two Gaussians is:

−
1

2

[

(x − x1)
T Σ−1

1 (x − x1) + (x − x2)
T Σ−1

2 (x − x2)
]

We will drop the factor −1/2 in the intermediate steps and will recover it at the
end. The expression above (without considering the factor−1/2) can be expanded
as:

xT (Σ−1
1 + Σ−1

2 )x − 2(xT
1 Σ−1

1 + xT
2 Σ−1

2 )x + C

where C is a constant. Since the product of symmetric matrices is commutative
and the two covariance matrices Σ1 and Σ2 are commutative, we can transform the
expression above into:

xT (Σ1 + Σ2)(Σ1Σ2)
−1x − 2(xT

1 Σ2 + xT
2 Σ1)(Σ1Σ2)

−1(Σ1 + Σ2)
−1(Σ1 + Σ2)x + C

Note that we used the fact that (Σ−1
1 +Σ−1

2 )Σ1Σ2 = Σ1+Σ2. Now we can complete
the square in the exponent and rewrite this expression as:

(x−(x1Σ2+x2Σ1)(Σ1+Σ2)
−1)T (Σ1+Σ2)(Σ1Σ2)

−1(x−(x1Σ2+x2Σ1)(Σ1+Σ2)
−1)+C ′

where C ′ is a constant absorbing C and any other constants needed for the square
completion. Multiplying the above expression by −1/2, the exponent has the re-
quired form for a Gaussian, and by direct inspection we see that the expected
average of the combination of measurements is

x̂ = (x1Σ2 + x2Σ1)(Σ1 + Σ2)
−1

and the new covariance matrix is

Σ̂ = (Σ1 + Σ2)
−1(Σ1Σ2)

These expressions correspond to the Kalman filter for the combination of two mea-
surements. To see this more clearly we can define the Kalman gain K as

K = Σ1(Σ1 + Σ2)
−1

Then the expressions above can be rewritten as

x̂ = x1 + K(x2 − x1)

and

Σ̂ = (I − K)Σ1

where I is the identity matrix. Notice that in all the algebraic manipulations above
we used the fact that the product and the sum of symmetric matrices is symmetric,
and that the inverse of a symmetric matrix is symmetric. Symmetric matrices
commute under matrix multiplication.
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5. Forecast and measurement of different dimension

The equations printed in books for the Kalman filter are more general than the
expressions we have derived, because they handle the more general case in which
the measurement can have a different dimension than the system’s state. But it is
easy to derive the more general form, all is needed is to “move” all calculations to
measurement space.

In the general case we have a process going through state transitions x1, x2, . . ..
The propagator matrix A allows us to forecast the state at time k + 1 given our
best past estimate x̂k of the state at time k:

x̂−

k+1 = Ax̂k + ν

The forecast is error prone. The error is given by ν, a variable with Gaussian
distribution centered at 0. If the covariance matrix of the system state estimate at
time k is called P , the covariance matrix of x̂−

k+1 is given by

P−

k+1 = APkAT + Q

where Q is the covariance matrix of the noise ν.
The measurement zk+1 is also error prone. The measurement is linearly related

to the state, namely as follows:

zk = Hxk + R

where H is a matrix and R the covariance matrix of the measurement error.
Kalman gain:

Kk+1 = P−

k+1H
T [HP−

k+1H
T + R]−1

State update:
ˆxk+1 = x̂−

k+1 + Kk+1[zk+1 − Hx̂−

k+1]

Covariance update:
Pk+1 = (I − Kk+1H)P−

k+1
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