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Omnivision systems for mobile robots

In this chapter we describe the omnidirectional vision system developed for
our RoboCup small-size and mid-size mobile robots. Our system consists of
a combination of a video camera with, either an elliptic concave mirror, or
a convex mirror with a special semi-conical shape. The concave mirror is a
remarkable low-cost solution. The convex mirror was specifically designed to
provide good resolution for objects less than 3 meters away from the robot, and
exponentially lower resolution for objects situated between 3 and 12 meters.
This chapter shows how to design such mirrors.

10.1 Local vision

The kind of robots that we want to consider now are mobile robots with their
own integrated camera, i.e., so-called “local vision” systems. Ideally, such
robots could be used in an office or factory environment. We would like them
to automatically adapt to the peculiarities of buildings made for humans,
so that we do not have to modify the environment just to fit the robot’s
capabilities.

Autonomous robots move around: usually they roll on the floor using two
or more wheels. The robots we consider here carry their own camera. There-
fore, the camera should be portable and small, yet powerful and capable of as
much temporal and spatial image resolution as possible.

Some of the main issues for local vision systems are:

• the size, weight, and quality of the cameras,
• the processing speed of the local electronics,
• fast color discrimination,
• localizing the robot in the world using visual cues
• identifying obstacles

We discuss these issues in the following sections.
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In the RoboCup mid-size league, the robots have local vision and commu-
nicate among themselves. The environment consists of a 12 by 8 meters long
rectangular green carpet with two goal boxes on each side, one colored yellow,
the other colored blue. There are four colored poles, one in each corner. The
poles to the side of the yellow goal have three stripes colored alternatively
yellow, blue, yellow. The other two poles are colored blue, yellow, blue. The
main problem, therefore, is to recognize four main colors: blue, yellow, green,
and the orange ball. Also, if we want to recognize the lines on the field, white
must be distinguished from other colors.

The environment for this robotic soccer task has been standardized. How-
ever, the colors have not. “Yellow”, “blue”, and “green” is defined in a loose
way, and the organizers of a competition can use any kind of shade of those
colors. Therefore, the local vision system must be as flexible and adaptable
as possible.

10.2 Omnidirectional vision

In most cases, it is advantageous to have a camera which is not just facing for-
ward, but which can perceive the surroundings of the robot, that is, a camera
which can get a full 360 degrees view of the space around the machine. Such
vision systems are called omnidirectional, and there exist many variations of
them. The simplest approach, probably, is to have a camera oriented upwards
or downwards, with a wide-angle capable of providing a 180 degree field of
vision. There are some security cameras based on this principle. However, the
lenses for such wide angulars tend to be expensive and heavy.

The second alternative is to use several cameras mounted in such a way
that they cover 360 degrees of vision. Four or five small cameras, mounted
on the sides of a pentagonal or hexagonal structure can cover the required
360 degrees. The picture in Fig. 10.2 shows the “Flycam”, an array of video
cameras that can record a complete view of their surroundings. The image
from the multiple cameras can be stitched into a single picture in real time.

The third alternative is to combine a video camera and a mirror to provide
a 360 degree view of the robot surroundings. Arrangements in which a mirror
is used to reflect the image, and a camera is used to capture the reflection,
are called catadioptric systems. They are popular in mobile robotics because
small mirrors and cameras can be combined to produce wide angle panoramic
effects. A catadioptric mirror-camera system is the second-best alternative to
our spherical retina which is able, with a small lens, to capture an almost a
180 degrees view of our surroundings. Until spherical imaging chips become
available, we will have to combine standard cameras with mirrors.

Consider a sphere or a conic mirror hanging above a camera oriented
upwards: both mirrors reflect the entourage into the camera and one can
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Fig. 10.1. An omnidirectional system with multiple cameras

get the desired omnidirectional view. However, the resolution provided by a
spherical mirror is usually very different for nearby and for distant objects.
The latter receive a smaller portion of the camera chip real state. This can
make the identification of distant objects difficult.

Fig. 10.2. The middle-size FU Fighters robots 2002 (left) and 2003 (right)

There is a need to find a compromise between the following conflicting
objectives:

• We would like to get a long range view of the surroundings.
• Resolution for nearby and distant objects should be allocated according

to the needs of the application.
• The image should be easy to focus with a small inexpensive camera.
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10.3 Catadioptric systems

For omnidirectional vision, the usual arrangement is to have one camera
pointed upwards towards a mirror which reflects a 360 degree view of the
objects around the robot. Popular choices for the shape of the mirror are
conic sections, such as spheres, paraboloids, hyperboloids, or elliptic mirrors,
and this for good reasons.

Fig. 10.3 shows the geometry of the reflection from several mirrors of
revolution, focused through the pinhole F of a camera. Only a vertical slice
of the mirror is shown. The first mirror (a) is planar: the image from the
floor is reflected to the camera pinhole F . The image is equivalent to the one
which a virtual camera with a virtual pinhole at F ′ would obtain. This “virtual
viewpoint” is important for focusing calculations. The second and third mirror
(b and c) represent conic mirrors, the first one is convex, the second one is
concave. A conic mirror provides a better view of distant objects without
modifying the imaging angle of the camera. Notice that in the case of the
concave mirror, the left and right side of the image overlap or can even switch
places, according to the angle of the cone. Finally, the fourth alternative (d)
represents two overlapped curved mirrors, an elliptical concave mirror and a
hyperbolical convex mirror. Both of them have the property of possessing a
single “virtual viewpoint” at one of the focus. That is, all rays going through a
focus are reflected on the opposite focus, where we can put the camera pinhole.
Notice also, that the conic mirror does not have a single virtual viewpoint, but
two for every vertical mirror slice. All virtual viewpoints for a conic mirror
lay on a circle around the vertical, for all vertical slices at all angles around
the vertical.

Curiously enough, the only mirrors of revolution with a single virtual view-
point, are 3D conic sections of revolution, that is, hyperboloids and ellipsoids.
Paraboloids also have a single virtual viewpoint at the focus, but they send
all reflected rays to a focus located at infinity. Also plane mirrors offer a single
virtual viewpoint.

Fig. 10.4 shows an example of the reflection of a checkerboard pattern
on a spherical and on a parabolic mirror. The distortion introduced by the
spherical mirror emphasizes the zone around the center. The parabolic mirror
is more even-handed. Distant objects do not become smaller too fast. This is
important if the projection will be used to navigate and we want to be able
to distinguish distant objects clearly.

One important property of mirrors of revolution is that straight lines em-
anating from the center of the camera are straight lines in the image. That is,
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Fig. 10.3. Progression of catadioptric systems

Fig. 10.4. A checkerboard pattern reflected on a sphere and on a paraboloid

the angles of lines meeting at the center of the image are invariant under mir-
ror of revolution reflections. Although the image can become warped, angles
of objects with respect to the camera can be determined directly.

The more popular catadioptric systems use a hyperbolic mirror to provide
an omnidirectional image. A hyperboloid has an advantage over other kinds of
shapes. Fig. 10.5 shows a hyperbola with its two foci. If we think of the upper
leg of the hyperbola as a convex mirror, then any ray coming from outside and
directed straight to the focus, will be reflected to the other focus. The camera
can be positioned exactly there. Therefore, all incoming reflected rays will be
perfectly concentrated in the camera objective and the camera will have the
reflected image perfectly focused.
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Fig. 10.5. A hyperbola and ellipse. All rays directed to the focus F are reflected
towards the focus F

′, on the concave elliptic mirror, and on the convex hyperbolic
mirror. The concave mirror requires a smaller camera opening angle for the same
image.

An alternative are elliptic mirrors. The ellipse is the dual conic section
of the hyperbola. As the figure shows, an elliptic concave mirror, reflects
incoming rays passing through one of the foci to the other focus, where we can
position the camera opening. Of course, the mirror has to be cut, in order to
let light reach the upper side of the concave mirror, but the result is exactly
the same as with a hyperbolic mirror. Fortunately, elliptic mirrors are easy to
obtain. They are used in battery lamps and in LCD projectors. They can be
bought at a fraction of the cost of a hyperbolic mirror, they can be made of
glass or plastic, and are much lighter that metallic convex hyperbolic mirrors.
Fig. 10.6 shows our first omnidirectional robot, built in 2000. The mirror was
taken from a battery lamp costing about one dollar.

The small mirror was adapted to an omnidirectional robot which took part
in the global vision challenge at RoboCup 2001 in Seattle, winning it easily.

The distance function is the most important feature of an omnidirectional
mirror, that is the correspondence between radial distances on the imaging
chip and radial distances on the floor. Fig. 10.7 shows a curve that gives
the correspondence between the pixel distance from the center of a video
image and the corresponding distance on the field. This distance function
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Fig. 10.6. Our first omnidirectional local vision robots

corresponds to a mirror that we designed to provide a linear mapping for the
first hundred pixels from the center of the image, and the distance function
of a conic mirror after 100 pixels distance. The conic mapping grows almost
exponentially, until it reaches a maximum distance of 10 meters for the 200th
pixel. We used a mirror with this distance function at RoboCup 20043, 2004,
and 2005.

Fig. 10.7. Distance function for an omnidirectional mirror. The function has a
linear phase in its first part.



112 10 Omnivision systems for mobile robots

The mirrors we produce are of the convex type, mainly because the ma-
chines we count on, can only mill this kind of mirrors. Figure below shows
the mirrors produced at our workshops for the mid-size robots. The mirrors
are cut out of an aluminum piece and are coated with a nickel alloy for better
reflection

Mirrors that provide a linear distance function have been designed by
several groups (cite). The image they provide looks as if it had been taken
from a camera attached to the ceiling. They have the disadvantage of wasting
real state on the image chip, since the image provided has to be fit inside the
circular reflection, as Fig. shows.

The vision system we finally designed in 2003 had to meet the following
constraints:

• The mirror could no be hung higher that 80 cm, and it had to provide an
adequate view of a 12 by 8 meters field of play.

• We decided to have a linear distance function for the first three meters
around the robot. This would allow us to have a very good view of the
field features, especially the white lines. After the linear phase, the mirror
should have the distance function of a conic mirror.

• We decided to hang the camera as far away from the mirror as possible,
in order to obtain the best possible focus.

10.4 Basics of mirror design

We first have to consider the geometry of mirror reflections, in order to design
our own special mirror.

An ideal pinhole camera has an infinite focus range: since all incoming rays
impinge at a unique position in the CCD chip, there are no defocused images.
A real video camera, however, is not a pinhole camera since low integration
times can only be achieved when the optics of the camera collects more light
than is possible with a pinhole. The camera lens has a certain radius and is
designed to focus images on a specific plane.

If the camera is too near to the mirror, it is more difficult to get good
focus. In general, the farther away the camera from the mirror, the easier it
is to get an acceptable focus. But how far away the camera can go, depends
on the opening angle of the optics. Cameras with a zoom are therefore easier
to focus to mirrors, which can also be built smaller.

Let us consider a convex conic mirror. Its wall maintains a constant angle
α with the horizontal. If a ray goes through the focal point F at an angle
β with the vertical, we would like to obtain a formula for the relationship
between the angle β and the distance D of the imaged point, measuring on
the floor from the center of the robot.
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Fig. 10.8. All mirrors with a single virtual viewpoint. In the lower row, an elliptic,
a parabolic, and a hyperbolic mirror. The virtual viewpoint is at a focus of the conic
section. In the upper row there is a planar and circular mirror. In the circular mirror,
virtual and real viewpoints coincide. The conic mirror is really just a differential
surface: the camera pinhole is located at the tip of the cone, and light is reflected on
the differential segments on both sides exactly at the tip of the cone, entering then
the camera pinhole. The rest of the mirror could have an arbitrary shape under this
arrangement.

Consider the diagram in Fig. 10.9. The camera’s pinhole is located at
point F . The coordinate system for the mirror shape has its origin at M . The
distance between the floor and the camera’s pinhole is H, and the distance
between the pinhole and the tip of the mirror (located at M) is h. Assume
that a ray of light L scattered by the floor enters the camera at an angle
β with the horizontal, after having been reflected by the mirror. The mirror
itself has an angle α with the horizontal at the point where the ray has been
reflected. We can compute the distance function for this or any mirror, if we
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Fig. 10.9. Reflection of a point A on the floor along the ray L, reflected on a mirror
towards a pinhole F .

can relate the angle β to the angle of reflection with respect to the vertical.
This angle is 2α + β, as shown by simple geometry. The angle of reflectance
on the mirror is π/2 − β − α because to the angle complementary to β we
have to subtract α. This angle is the same for the ray L with respect to the
mirror. As the diagram shows, the angle of the ray L with the horizontal is
therefore π/2 − 2α − β, and since this angle is complementary to the one we
are looking for, the requested angle is 2α + β. Therefore, the distance D on
the floor is given by

D = x + (H + h + f(x))tan(2α + β) (10.1)

For constants H, h, and α, the distance function for a conical mirror grows as
the tangent function of the angle β. This function grows slowly first (slower
than the exponential function), but much faster at the end, when the argument
approaches π/2. The derivative of the tan(x) function is 1/cos2(x), which
diverges rapidly to infinity at x = π/2.

10.5 Computing your own mirror

In this section we show how to compute the shape of a mirror of revolution
for a given distance function. The distance function d(p) should be monotone.
It provides the distance of a point A on the floor to the vertical axis of the
camera, when A is imaged at pixel p (measured from the center of the image).
In what follows we consider just a vertical slice of the mirror, since it is a
mirror of revolution and has the same form around the vertical axis.



10.5 Computing your own mirror 115

Fig. 10.10. Differential segment of a mirror with angle αn with respect to the
horizontal. Reflection of two rays on the extremes of the differential segment.

Fig. 10.10 shows the main idea of the iterative method. Assume that we
compute for all pixels at a distance p = 1, 2, . . . , n, from the center of the
image, the angle at which a ray from pixel i leaves the camera pinhole F
with respect to the vertical (this angle depends on the dimensions of the
imaging chip and the distance of the chip from the camera’s pinhole). Let us
call those angles β1, β2, . . . , βn. Given the coordinates p1, p2, . . . , pn in cm of
the pixel 1, 2, . . . , n on the chip (measured from the center), and the distance
r of the camera pinhole from the imaging chip, then βi = arctan(pi/r), for
i = 1, 2, . . . , n.

In what follows, we assume that we have already computed the values of
xn, and fn, and derive from them, the angles βi and the distance function,
the next point (xn+1, fn+1) of the mirror’s shape. The computation is started
with initial values for x1 and f1.

Fig. 10.10 shows the ray with angle βn reflected on a section of the mirror,
and falling at a distance xn + dn from the vertical axis of the camera. The
next ray, at angle βn+1 falls at a distance dn+1. The section of the mirror
being considered is a segment starting at the point (xn, fn) and ending on the
point (xn+1, fn+1). The camera pinhole is located at a distance H from the
floor, and the origin of coordinates M of the mirror function f is located at a
height h from the pinhole F .

First, we compute the angle αn for the n-th mirror segment. We know
also from the analysis in the previous section (Eq. 10.1) that the ray from the
mirror to the point dn makes an angle 2αn + βn with the vertical. Therefore
dn − xn = (H + h + fn)tan(2αn + βn), and from this we obtain
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αn =
1

2

(

arctan

(

dn − xn

H + h + fn

)

− βn

)

(10.2)

It is easy to see from the diagram in Fig. 10.10 that

fn+1 − fn

xn+1 − xn

= tan(αn)

It is also clear that
xn+1

h + fn+1

= tan(βn+1)

These are two equations with two unknowns (xn+1 and fn+1). They provide
us with an iterative method for obtaining the next point (xn+1, fn+1) given
the previous point (xn, fn) and the previously computed angle αn.

Solving the system of equations we obtain

fn+1 =
fn + tan(αn)(h − xn)

1 − tan(αn)tan(βn+1)
(10.3)

and
xn+1 = (h + fn+1)tan(βn+1) (10.4)

Therefore, we can start from an initial value for (x1, f1) and proceed with
the iterative computation procedure defined by Eqs. 10.2, 10.3, and 10.4, for
obtaining the shape of the mirror for a given monotone distance function d.

As a proof of concept, we computed the distance function for a conic
mirror, and then recomputed the mirror shape which produces that distance
function. We obtained a conic mirror again. Fig. 10.11 shows the result and
the position of the virtual viewpoint for a camera 50 cm above the ground,
and a mirror 20 cm above the camera’s pinhole.

Fig. 10.11. Projection of rays from the floor on one side of a conic mirror, and
continuation of the ray towards a “virtual” viewpoint.
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Fig. 10.12. Distance function for several mirror shapes. On the left, a slice of a
conic, a quadratic, and a cubic mirror. On the right, the distance functions. The
distance function for the cubic mirror grows faster at the end. The distance function
for the conic mirror does not start at the origin.

10.6 Why conics are special

In this section we show why the conics of revolution are the only mirrors with
a single virtual viewpoint. Remember: a camera with its pinhole at the virtual
viewpoint would capture the same image as a camera with its pinhole at the
point where reflected rays converge.

For the proof, refer to Fig. 10.13. The pinhole of the camera is located
at F . A virtual viewpoint is located at F ′. Assume that all rays which go
through F , after reflection on the mirror, go through F ′ when prolonged. Let
us call α the angle of the reflected ray with the horizontal, θ the angle of the
incoming ray with the horizontal too, and β the inclination of the mirror with
respect to the vertical. The angles formed by the incoming and reflected rays
on the mirror, with respect to the normal to the mirror, must be equal. That
is: α + β = θ − β. Therefore

2β = θ − α

We do not have the angle β directly, but the derivative of the mirror shape
function f(x) is equal to tan(β). Therefore, we are interested in an expression
for tan(β). We know that

tan(2β) = tan(θ − α) =
tan(θ) − tan(α)

1 + tan(α)tan(θ)

and

tan(2β) =
2tan(β)

1 − tan2(β)

Therefore
2tan(β)

1 − tan2(β)
=

tan(θ) − tan(α)

1 + tan(α)tan(β)

From this, we obtain the differential equation
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2f ′(x)

1 − f ′2(x)
=

tan(θ) − tan(α)

1 + tan(α)tan(θ)

Fig. 10.13. Reflection of a ray on a mirror. The reflection goes through the pinhole
F . The virtual viewpoint F

′ is located at the continuation of the original ray, and
at x = 0, for a mirror of revolution.

Now, we only need expressions for tan(θ) and tan(α). From the diagram
tan(α) = (c − y)/x and tan(θ) = (c + y)/x. Therefore

2f ′(x)

1 − f ′(x)2
=

(c + y)/x − (c − y)/x

1 + (c + y)(c − y)/x2

or equivalently
f ′(x)

1 − f ′(x)2
=

xy

x2 + (c + y)(c − y)

(10.5)

This leads to a quadratic equation for f ′(x). Solving the quadratic

xyf ′(x)2 + (x2
− y2 + c2)f ′(x) − xy = 0 (10.6)
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we obtain a first order differential equation.
The only solutions to the differential equation 10.6 are ellipses and hyper-

bolas (also the degenerate case of planar mirrors). The parabola is a limit-
ing case when the pinhole of the camera is located at infinity (for a convex
paraboloid mirror). See [?] for the details of how to solve the differential equa-
tion.

The same result was proved in 1990 by [?] in a more general setting, that
is, of mirrors in n-dimensional space. Therefore, the conic sections, that is,
the locus of all solutions to quadratic equations, are the only mirrors which
satisfy the “single virtual viewpoint constraint.

However, as we saw in the previous section, it is possible to build a mir-
ror which produces any desired monotonic distance function. Those mirrors
do not necessarily have a single virtual viewpoint, but do we need it? The
answer has to do with the theoretical analysis of the distortions and focusing
aberrations of mirrors. Having a single viewpoint simplifies the mathematics
and the analysis of aberrations. Multiple viewpoints can only be handled with
numerical analysis.

10.7 An omnidirectional mirror for an autonomous car

The techniques described in this chapter can be extended to deal with mirrors
other than mirrors of revolution. We have developed mirrors for a computer vi-
sion system for an autonomous car with 180 degrees of lateral vision. Fig. 10.7
shows the image obtained in a camera looking back on a mirror which is re-
flecting the streets in front of the car. In the sequence of images the car is
approaching an intersection (the streets meet at 90 degrees). When the car
drives across the intersection, the view to the sides covers 180 degrees and is
quite warped, while the vertical view covers no more than 90 degrees. Along
the vertical slices, the mirror images look like obtained with a planar mirror,
specially towards the center of the image. On the sides, the mirror images
resemble those of omnidirectional mirrors.

10.8 Catadioptric eyes in nature

Nature is the best engineer, so it should not come as a surprise that catadiop-
tric eyes have been designed by evolution in different types of animals. Such
eyes consist of a reflector which concentrates and focuses light on individual
light sensors. It is also remarkable that pinhole eyes exist after all. A lens or a
mirror offer the possibility of concentrating more light on the light receptors,
increasing the contrast of the image. A pinhole eye is simpler and works with
much less optic machinery. In this chapter we have used the pinhole camera
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as an ideal model mainly because of its simplicity. Fig. 10.8 shows a diagram
of the Nautilus eye, a cephalopod mollusc. The pinhole eye does not collapse
since it is filled with sea water. The Nautilus has probably a blurred vision,
which is nevertheless useful in its marine environment.

Fig. 10.14. The pinhole eye of the Nautilus, a prehistoric creature.

Our first example of a catadioptric eye is the scallop eye. Scallops do not
image the environment with anything near the resolution of the vertebrate eye,
but they can sense light and shadows, and since the scallop eyes are arranged
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along the border of the clamshell, 60 to 100 of them, they can be “triggered”
sequentially by a shadow moving sequentially in front of the shell. Scallops
can also probably image objects at a distance, because they close their shell
when divers swim by. Fig. 10.15 shows the position of the scallop eyes along
the rim of their shell.

Fig. 10.15. The eyes of the scallop, visible as dark spots on the rim of the shell.

In the diagram of Fig. 10.16 we can see a photograph of the scallop eye.
The retina is clearly visible right behind the lens. It seems that the problem
with the scallop lens is that it is made of a material with low refractive index,
so that the retina would have to be located very far behind the lens in order
for the image to be focused. The alternative is to focus the light back with
the help of a spherical mirror, so that the focused image forms just behind
the lens and on the light receptors of the retina. In this arrangement the light
goes through the receptors unfocused and comes back focused, so that scallop
eyes must form images with low contrast,as if looking through a fog. The
lens of the scallop eye has a peculiar form which apparently has the function
of correcting the spherical aberration of the mirror. The mirror itself has a
silvery color and is made of similar material as that contained in the shiny
inner surface of shells (and in pearls).

The example of the scallop is interesting because in this case evolution
traded-off perfecting the lens against perfecting a mirror reflector. Lens and
mirrors are equivalent, they can focus light in the same way.

That mother nature also found out the advantage of using parabolic light
collectors much earlier than Newton, is evidenced by the reflecting eyes of
the Gigantocypris, small deep-sea crustaceans which in that environment try
to collect as much light as possible. Their eyes look like car light reflectors,
but instead of a light bulb, the reflectors have a bulb covered with light sen-
sors! Fig. 10.17 shows a photograph of the two eyes, and a diagram of its
parabolic shape. A biologist wrote about these eyes: “The paired eyes have
huge metallic-looking reflectors behind them, making them appear like the
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Fig. 10.16. The scallop eye in cross section (left). The back reflecting surface focuses
light directly on the light receptors (right). The lens helps to correct the spherical
aberration of the mirror.

headlamps of a large car; they look out through glass-like windows in the
otherwise orange carapace and no doubt these concave mirrors behind serve
instead of a lens in front (Hardy 1956).”

Fig. 10.17. Photograph of the Gigantocypris eyes, and diagram of the parabolic
reflectors. The bulbs at the focus of the paraboloid are covered with photoreceptors.

However, the prize for the most remarkable catadioptric eye design must
really go to shrimps and lobsters. Their eyes resemble the composite eyes of
flies or bees. However, there is an important difference: light falling on each
segment of the composite eye is not focused with a lens, but is just reflected
down on the retina. The reflection occurs on the sides of the elementary eyes,
which have a square cross section and are prims mirrors which reflect light on
their four sides. Fig. 10.18 shows a photograph of the composite eye, of the
square cross section of the individual prisms. The angle of the prisms walls
are oriented so as to reflect and focus light on the retina. However, when light
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arrives at a slight skewed angle with respect to the plane of the diagram, its
direction must be corrected, and this is done thorugh a double reflection on
the prisms.

Fig. 10.18. The eyes of shrimps and lobsters are composite eyes. Individual eyes
are prisms with reflecting walls. The walls focus the light on the retina. The corner-
mirror construction can collect more light on the same retinal spot.

Fig. 10.19 shows how a corner mirror works. Any ray of light with arrives
to one side of the mirror, skewed, is reflected on the other side and is sent back
in the same angle as it arrived. The angle changes direction twice, rotating
twice by 90 degrees. The effect is just like from a planar mirror, but we do
not have to worry about the angle of light ray with the normal to the mirror
surface. It is like an “omnidirectional” planar mirror. Such a corner mirror
was left by American astronauts on the moon. Aiming a laser from the earth,
its reflection could be detected on earth easily, since the laser does not have
to be in perfect alignment with the mirror. An accurate measurement of the
distance of the earth to the moon was obtained with this laser reflection.

Finally, even vertebrates and fish have developed catadioptric solutions
to the problem of gathering the maximum amount of light in the retina,
specially at night. The surface of the retina in cats and sharks is covered by
reflecting cells which send back the light which went by the photoreceptors
without being absorbed. These photons get a second chance to be detected.
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Fig. 10.19. Operation of a corner mirror. Any ray falling on its surface is reflected
back in the same direction.

The reflected photons are narrowly focused so that if they are not detected
again, they will leave the eye through the lens, so that its backscattering in
the eye does not diminish the image contrast. That’s why the eyes of cats look
bright at night. The eyes of sharks, spidersm, and many other night active
animals reflect light on the “tapetum”, the quasi-mirror on the back of the
retina. Fig. 10.20 shows a diagram of the angle at which the shark’s tapetum
reflects light back. The arrangement is catadioptric.

Fig. 10.20. Arrangement of the reflecting surfaces in the tapetum of the shark’s
eye. reflected light is focused and can be detected or can leave the eye through the
lens.

10.9 Final comment

Optical lenses work because they can deflect light and make it converge where
it can form an image. Mirrors can do exactly the same trick, they change the
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path of a ray of light, but reflecting it back instead of letting it go through.
Other than that, they share the image formation equation with lenses which
can focus light:

1

d
+

1

s
=

1

f

where d is the distance of the object to the lens/mirror, s the distance of the
virtual image, and f the distance of the focus. Parabolic mirrors image objects
at infinity (d = ∞) at the focus (s = f). The parabolic mirror is therefore
the equivalent of the traditional collecting lens, as realized by Isaac Newton
when he invented the telescope which bears its name. It is most remarkable
that during the evolutionary history of the earth, nature has given a try to
almost all camera designs which engineers have developed, from pinhole to
catadioptric cameras.


