
MATRIX: A force field pattern matching
method for mobile robots

Felix von Hundelshausen, Michael Schreiber, Fabian Wiesel,
Achim Liers, and Raúl Rojas

Technical Report B-08-03

Freie Universität Berlin, Takustraße 9, 14195 Berlin, Germany
http://www.fu-fighters.de

Abstract. In this paper we describe a method for localizing and track-
ing a mobile robot in the type of field used for RoboCup mid-size soccer
robots. Each robot carries an omnidirectional camera which provides a
360 degree view of the robot’s surroundings. The only features that we
use for localizing the robot are white lines present on the green carpet.
These white lines are easy to find and discriminate – they are not too
dependent on the color calibration of the camera. The MATRIX method
localizes a robot in a field by testing a grid of hypothetical positions for
a best fit to the data. Once localized, tracking the robot from frame to
frame, in real time, can be done by combining the odometric data with
the MATRIX pattern matching.

1 Mobile Robots Localization

Localizing mobile robots in a known environment is easier that localizing robots
in a space that has to be explored and mapped first. However, if the sensors
used by the robots are noisy or if the computational capabilities of the robot are
limited, localizing a robot in a known environment can also be a hard problem.
This is the case in the RoboCup environment, where mobile robots compete
trying to be as fast, yet as precise as possible. Usually, the robots have only a
partial view of the field and color calibration tends to be difficult, due to varying
lightning conditions. Also, spectators sitting or standing around the field, can be
mistakenly identified with the yellow and blue poles used at the corners of the
field. Therefore extensive color calibration is done by all teams before a game
starts. Some groups have studied methods that could avoid work even without
color information, for example, for finding the ball, but they are computationally
expensive and not feasible yet [8].

It would be important to be able to depend less on the color calibration of
the cameras and more on certain prominent features of the field. The white lines
on the green carpet are a very good example, since they are specially prominent
and easy to find. Some RoboCup teams already exploit such features in order
to localize the robot. Utz et al. ([9]) work with this kind of information, but
map it to Hough space which provides a kind of assessment of the number of



expected features visible on the field. It is a form of pattern matching, using the
information available in Hough spaces for lines and circles.

Nevertheless, it is very difficult to leave the localization of a mobile soccer
robot alone to the vision system. If the robot gets confusing images (because,
for example, another robot is obstructing the camera), then the robot loses its
initial position which can be difficult to recompute again – the robot gets lost
on the field. Therefore, we need a method for localizing the robot globally on
the field, and another method for tracking the robot from one known position
to the next [7].

Odometry is a straightforward method for disambiguating vision data. Hu-
man soccer players do not look at the field constantly, they have a “feeling” for
their current position extrapolated from the last known position. They know in
which direction they have moved, and for how long, and so they only need to look
occasionally to the field, in order to “recalibrate” their current position. This is
also the best strategy for a mobile robot, specially since odometric data tends to
be much more precise than data for legged robots. Our mid-size robots can drive
forward for about three meters, and the localization error after stopping is just
several centimeters (just how many, depends on the velocity and direction of the
robot). A combination of odometric with vision data can reduce the load on the
control computer enormously. Instead of having to process each frame of a video
in search of field features, it would be possible to track the robot during short
periods based fully on the reported odometry, while the vision can recalibrate
the odometric data periodically, for example once a second. Then only one frame
every second has to be fully processed for determining the robot’s position, while
the odometry is reaching the robot in a continuous stream. Of course, for finding
the ball and going for it, it is important to process 30 fps, but only in order to
find the orange blob inside the field. Since our localization method is so fast, we
can even use it to correct the robot position in every frame.

One problem with odometry data is that, in the case of omnidirectional
robots, three wheels produce the desired movement, sometimes by working against
each other. The wheels should not slip on the floor, and if they do, the odometry
data has to be corrected to take this slippage into account. In this paper we
present a method to correct the odometry data.

2 Localization in a flat featured environment

A flat featured environment is one in which lines on the otherwise featureless
floor provide position information. This is the case of the RoboCup environment,
in which white lines on a green carpet delineate a soccer field of up to 10 meters
long by 5 meters wide. We would like to localize the mobile robot using this
information. Fig. 1 shows a photograph of the field and the markers used. One
goal box is blue, the other yellow. The poles at the four corners are painted
yellow and blue.

The frame captured by an omnidirectional camera is processed by our mobile
robot, which tracks regions in the field using an algorithm described elsewhere



Fig. 1. A view of the mid-size field used at RoboCup 2002

(cite). The robot then looks for color transitions between green and white, and
dark and white. This color transitions represent possible lines on the field, that
we want to identify and track. Fig. 2 shows a cloud of points, from the perspective
of the robot. The dark spots represent edges between white and green colors, or
viceversa. It is easy for a human to match this cloud to a model of the field, but
it has to be done automatically by the robot and in only a few milliseconds.

−300 −200 −100 0 100 200 300
−200

−150

−100

−50

0

50

100

150

200

250

300

Fig. 2. A cloud of vision data points representing white lines on the field, from the
perspective of the robot



2.1 Global localization

If the robot does not have its initial position, we use a pattern matching approach
to find the best possible hypothesis. The idea is the following. If we have the
cloud of vision points, we can rotate it several times (for example 16 times) and
then we can translate each rotated cloud to each of several hypothetical regions
of space (see Fig. 3, left). These position hypotheses form a grid on one half of
the field (Fig. 3, right). We only use one half of the field, because the other half
is symmetrical. The robot can be localized on one side or the other. Additional
information has to be used to disambiguate the choice (like the color of the box
goals seen).

−300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

−300 −200 −100 0 100 200 300
−250

−200

−150

−100

−50

0

50

100

150

200

250

Fig. 3. The points on the field represent the hypothesis tested for global localization.
16 orientations are tested for each position.

Given the rotation and centering of the cloud, the quality of the match to
the field is measured by computing, for each point, the distance to the nearest
segment or circle in the model of the field. These distances are added for all
points, are averaged, and the final number represents the quality of the match.
To speed up the computation, we compute beforehand a matrix of distances of
every element in a 100 by 70 grid to the segments and circles in the model. Given
the cloud of points it then is easy to do a table look-up to associate each point
with the distance to the nearest segment. A cloud of points has typically 500 to
700 points, so that the table lookup and averaging takes only a few microseconds.
Fig. 4 shows the matrix of “qualities, that is, the distance vector from each point
in a grid that covers the field (and also points outside the field) to the nearest
model element.

Ideally, we would like to compute the quadratic error associated with a least
squares match of the cloud point to the model. However, the minimal distance
function is not smooth: midway between two parallel line segments the distance
vector changes direction suddenly. It is then difficult to provide an analytic model
of the field, that does not contain “if” decisions.



−400 −300 −200 −100 0 100 200 300 400
−400

−300

−200

−100

0

100

200

300

400

Matrix of qualities 

Fig. 4. Matrix of distance vectors to the nearest segment or circle on the field, for every
point on a grid laid over the field and its surroundings

2.2 Tracking the robot

Tracking the robot can be done also by using pattern matching. The idea is to
start from a known position and orientation of the robot. We rotate the cloud of
points by the known orientation and translate the cloud to the known position.
The cloud should be a good match of the model. If the robot moves, the next
cloud from the camera (repositioned and reoriented as before) will almost match
the model, but will have moved. The translation and rotation of the cloud with
respect to the model is the translation and rotation of the robot. We need to
compute the inverse transformation, in order to recenter the new cloud and make
it fit the model as well as possible.

The inverse transformation is computed iteratively. We start from the new
cloud of points and compute the total average “force” on each point. The force
on a point is the attraction that a segment or circle of the model exert on each
point. The force is proportional to the distance to each line element. We add
all forces acting on a point, but weighting them in a way that ensures that the
nearest line elements have a greater contribution to the estimated force.

If (x, y) are the coordinates of a point and the array `i, i = 1, . . . , 11. rep-
resents its distances to the 11 model elements, the weight wi for each single



distance is computed as:

wi = e(−`i/10)/(
k=11∑

k=1

e(−`k/10)

The constant 10 in the exponential’s argument provides good results for distances
measured in centimeters. It must be adjusted by hand to the units of the model.

The total force fi on the i-th point is then

fi =
k=11∑

k=1

wkdk

where dk is the vector that joins the point (x, y) with the nearest point of the
k-th model’s element.

The idea behind smoothing the force function is that when two line segments
compete agains each other trying to “pull” on a point, the forces will equilibrate
if the distance to two segments is very similar. It is also easy to transform this
weighting function in an approximation to the minimum selection rule used for
measuring the quality of a model, by just adjusting the proportionality constant
in the exponential’s argument.

As in the case of the matrix of qualities, we precompute the matrix of forces,
using a grid laid over the field model. Fig. 5 shows the result. The small line
segments represent the total force on each point on the grid.

Computing the total force on a cloud of points takes a few microseconds. We
also compute the angular momentum around the center of mass of the cloud.
We then pull the cloud of points in a direction proportional to the total force,
with a maximum pull of 10 centimeters. We rotate the cloud with an angle
proportional to the angular momentum with a maximum rotation of 2 degrees.
These maximum values were selected because the robot will not move farther
away that 10 cm or rotate more than 2 degrees in one frame. These constants can
be adjusted to fit the robot speed. Also, several iterations of the force algorithm
can be run, to ensure that the computation converges to the appropriate position
and orientation estimation. Fig. 6 shows a cloud of points and the forces acting
on them, as an illustration of the method.

3 Monte Carlo MATRIX localization

The method that we finally implemented for tracking our robots is the following.
At the start of a game we estimate the robot position by using a global

match to the quality grid. We can also determine the position of the goal boxes,
yellow and blue, and this disambiguates the side of the field, the robot is in.
A global match of the robot’s position takes a few milliseconds. Fig. 7 shows
the result of matching a cloud of points to a grid with only 35 hypotheses and
using 16 orientations. A few force field iteration displace the cloud of points to a
very good match, that provides the initial position and orientation of the robot.



−400 −300 −200 −100 0 100 200 300 400
−400

−300

−200

−100

0

100

200

300

400

Matrix of forces 

Fig. 5. Matrix of weighted forces to the segments and circle on the field, for every point
on a grid laid over the field and its surroundings

−400 −300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

400

Fig. 6. A cloud of points and the forces exerted on them by the model elements



Even when a small part of the while lines are visible, the matching is good.
Notice also that in this experiment the calibration of the distance function for
the omnidirectional mirror is far from being perfect, yet the matching found is
excellent.

−400 −300 −200 −100 0 100 200 300
−300

−200

−100

0

100

200

300

Fig. 7. Result of a global match. The initial cloud is centered around the origin. Two
clouds show that the left rectangle box has been matched to the data. One of the
matched clouds is the initial guess, the second is a corrected cloud, computed by the
force field method.

Once the position of a robot on the field is known, we track the robots using
odometric and vision data. Our approach resembles a Kalman filter implemented
with Monte Carlo sampling of the vision data.

Fig.8 shows the odometric data over a period of several seconds. As can be
seen, the data is of good quality, since the robot position does not leave the field
(this would happen if the error was large, the robot position would then drift
away from the field).

For every vision frame we obtain an odometric reading from the robot. The
odometry provides a displacement and rotation. From the old position and ori-
entation (x, y, θ) we compute the new position and orientation (x′, y′, θ′) using
the odometry data. We then produce 20 random positions and orientations,
normally distributed and centered around the new estimate. We compute the
quality of each position and select the best. We then recompute the position
and orientation of the robot by adding a fraction α of the change in displace-



−300 −200 −100 0 100 200 300
−250

−200

−150

−100

−50

0

50

100

150

200

250

Odometry 

Fig. 8. Movement of a robot as reported by the odometry

ment and orientation of the robot (from the computed odometric state to the
hypotheses selected) to (x′, y′, θ′). This is the final new estimate and we process
a new frame.

Notice that we can also improve the estimate, by doing a force field match-
ing after a hypotheses has been selected. We can also periodically check the
estimated position against a global matching of the vision data. In case that the
robot starts to lose its actual position, a global matching will recalibrate the
robot to a best new estimate of its position.

4 Correcting the odometry

Omnidirectional robots move activating three wheels. In the case of our robots,
the two front wheels are placed at an angle of 150 degrees relative to each other
(instead of 180 degrees, as in two-wheeled robots). The third wheel, in the back
of the robot, is parallel to the line joining the centers of the two front wheels.

When the robot is moving forwards, only the two front wheels rotate, and
the third wheel slides passively (small wheels on the omnidirectional wheels let
them slide almost without friction in the direction perpendicular to the wheel).
When the robot moves forwards, but with a certain rotation of the third wheel,
the result is a forward and lateral displacement of the robot.

In the case of our robots we have detected that fast forward motion, com-
bined with lateral motion, sometimes leads to slippage of the third wheel. The



odometry data then overestimates the amount of lateral displacement. The slip-
page is due to the fact that the two forward wheels bring the small wheels on
periphery of the third wheel into fast motion, which reduces their grip on the
carpet surface, due to the different dynamic friction coefficient. A reduced grip
translates into reduced traction and wheel slippage.

However, the overestimation of the odometric error must be proportional
to the forward velocity of the robot. Therefore, we collected odometric data,
allowing the robot to move from a known position to another, at different ve-
locities. The table of real versus estimated displacement provides a way to train
a predictor that can correct the odometric data when the robot is moving. The
predictor provides a correction factor f between 0 and 1. The real contribution to
the global displacement forf a wheel is given by its rotation, times the correction
factor.

Notice that the correction has to be done for every wheel. Every time the
robot moves in such way that one of the wheels experiences a large perpendic-
ular effective movement, its effective grip is reduced and its traction too. The
ideal case, for minimal slippage, is when all wheels cooperate moving the robot,
that is when the robot rotates in place. In this case, there is no perpendicular
displacement of the wheels and the correction factor for the odometry can be
set to 1.0 for each wheel.

The important factor is therefore the amount of displacement of the robot
normal to each wheel. When the robot is moving forward at a velocity v, and
with wheels placed at an angle of 150 degrees, the perpendicular displacement in
relation to the wheels is given by sin(Π/12), which is 0.2588. The front wheels
experience a velocity component which is around v/4 of the velocity component
experience by the third wheel. It is to be expected that the odometric error is
much larger for the third wheel.

The odometric error does not need to change linearly with the perpendicular
motion of each wheel. Friction is a nonlinear phenomenon, and therefore the best
and simplest approach is to work with tables that correct the pulses transmitted
by each wheel, according to the expected displacement of the robot. This in
turn, affects the expected displacement, which in turn affects the correction.
The process converges after two or three iterations to an appropriate value.

Fig. 9 shows a robot whose predicted displacement is the vector (x,y). The
displacement is obtained by multiplying a matrix M with the vector of motor
pulses (t1, t2, t3). It is necessary to know the time elapsed in order to have
an estimate of the velocity. If the odometry data is obtained regularly, the time
difference is fixed and the motor pulses and (x, y) are proportional to the velocity.
It is easy to compute the orthogonal projection of (x, y) to each wheel.

For the first wheel at an angle Π/12, it is xcos(Π/12) + ysin(Π/12). For the
second wheel at an angle Π − Π/12, it is −xcos(Π/12) + ysin(Π/12). And for
the third wheel, it is simply −y. The absolute values of these quantities are
proportional to the velocity and provide a first correction to the pulse values
t′1, t

′
2, t

′
3. This correction can be used to compute the next correction and so on.



Fig. 9. Displacement of a robot and placement of the three wheels

If the robot rotates when it moves the distance (x, y), then the above pro-
jections can be calculated twice: once for the initial orientation of the robot, a
second time for the predicted final orientation of the robot. The average of both
projections gives a better estimate of the necessary correction factor for each
wheel.

(and here we need a table of correction factors, to be done by Felix+Fabian?)

5 Results

The MATRIX method has been implemented in our mobile mid-size robots. The
main advantage of this method, compared to others, is the low computational
load that it imposes on the host computer. Also, discriminating the white points
on the field from other colors is easier that segmenting colors. The method is less
dependent in a correct camera calibration than in the case of other localization
techniques.

Our method is computationally cheaper than the approach followed by Hanek
et al. ([9]), since we do not map the data points to a Hough space. Our matching
reduces to a table look-up on a matrix of qualities, to assess the total quality
of a match, or to table look-up in a table of forces, when adjusting the known
position iteratively.

Goord odometric data is very important, so that tracking the robots does
not require to check too many hypotheses for evey frame. Therefore, we have
shown how to correct the odometry data in the case of omnidirectional robots.

In the future we envision a combined system in which the vision adjustment
helps to calibrate both the distance function of the camera and the odometric
data. A slightly decalibrated robot could then enter the field and calibrate its
distance function and odometry by just moving around in the field, to known
positions, and checking its vision and odometric data. The calibration time for
mobile robots would then be dramatically reduced.



References

1. Rojas, Raúl: Neural Networks – A Systematic Introduction. Springer Verlag, Hei-
delberg, 1996.

2. Simon, Mark; Behnke, Sven; Rojas, Raúl: Robust Real Time Color Tracking. Lecture
Notes in Artificial Intelligence 2019 (2001) 239–248.

3. Rojas, Raúl; Behnke, Sven; Liers, Achim; Knipping, Lars: FU-Fighters 2001 (Global
Vision). Lecture Notes in Artificial Intelligence 2377 (2002) 571–574.

4. Fox, Dieter, Burgard, Wolfram, Dellaert, Frank, and Thrun, Sebastian, Monte Carlo
Localization: Efficient Position Estimation for Mobile Robots, Proc. 16th National
Conference on Artificial Intelligence, AAAI99, July 1999.

5. Fox, Dieter, Burgard, Wolfram, and Thrun, Sebastian, Markov Localization for
Mobile Robots in Dynamic Environments, J. of Artificial Intelligence Research 11
(1999) 391-427.

6. Thrun, Sebastian, Probabilistic Algorithms in Robotics, Technical Report CMU-
CS-00-126, School of Computer Science, Carnegie Mellon University, Pittsburgh,
USA, 2000.

7. Ribeiro, Isabel, and Lima, Pedro, “Markov Lokalization”, (tutorial), Instituto Su-
perior Tecnico, Lisbon, Portugal, 2002.

8. Hanek, Robert, Schmitt, Thorsten, Buck, Sebastian, Beetz, Michael, “Towards
RoboCup Without Color-Labeling”, in Kaminka, Lima, Rojas (eds.), RoboCup 2002:
Robot Soccer World Cup VI, Springer-Verlag, 2003.

9. Utz, Hans, Neubeck, Alexander, Mayer, Gerd, and Kraetzschmar, Gerhard, “Im-
proving Vision Based Self-Localization”, in Kaminka, Lima, Rojas (eds.), RoboCup
2002: Robot Soccer World Cup VI, Springer-Verlag, 2003.


