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Abstract. In this section we show two things: a) that the curve of the velocity

of a rolling ball has three well defined segments corresponding to two phase
transitions, and b) that a robot pushing a ball at a constant velocity can keep
it “glued” to the robot chassis by just reducing slightly the rotational velocity

of the ball. When robot and ball move at the same speed v, anytime the robot
loses contact with the ball, the speed of the ball falls rapidly below v. The
robot makes then contact with the ball again.

1. Rolling Ball Dynamics

A ball can slip on a surface, can roll, or both. A ball slipping on a surface is
decelerated by the friction force opposing the ball linear displacement. The friction
force provides also angular momentum to the ball, which starts rotating until it
rolls on the surface without slipping. When the ball is slipping, we have kinetic
friction between the ball and the surface; when it is rolling we have rolling friction
between the ball and the surface. The coefficients µr and µk of rolling and kinetic
friction, respectively, are different. Kinetic friction depends on the weight of the
object being pushed. Rolling friction depends on the deformation of the ball and
the deformation of the floor – it is very difficult to handle theoretically and can
only be assessed experimentally.

When a ball of mass m is slipping, the kinetic friction force Fk is proportional
to the weight of the ball, as given by the formula

Fk = µkmg.

The kinetic friction coefficient (and thus the force) is independent of the velocity
of the ball, within certain limits (some cm/s up to several m/s).

A force applied to an object modifies its linear and angular momentum. The
kinetic friction force Fk acts on the ball according to Newton’s second law

Fk = mv̇

Where v is the velocity of the ball, and v̇ its first derivative. The angular momentum
is modified according to the formula

FkR = Iω̇

where R is the radius of the ball, ω the angular velocity, ω̇ its first derivative, and
I the moment of inertia of the ball. For a ball of mass m and radius R the moment
of inertia is 2

5
mR2. Therefore

Fk =
2

5
mRω̇
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Noting that negative changes of v correspond to positive changes of ω, we can
equate the above formulas to obtain

mv̇ = −

2

5
mRω̇

Therefore

v̇ = −

2

5
Rω̇

This is a “conservation of momentum” expression. The negative change in linear
momentum of the ball is balanced by a positive change in the angular momentum
of the ball. It is interesting to note that the relationship between v̇ and ω̇ is
independent of the mass of the ball. Integrating this expression for a ball that
starts with a velocity vi and angular velocity ωi and ends with velocity vf and
angular velocity ωf , we obtain

vf − vi = −

2

5
R(ωf − ωi).

One interesting case to consider is when the ball starts moving with slippage
at velocity v0 and no rotation. When the ball reaches a state of rolling without
slipping, the rolling velocity vr is related to the rolling angular velocity ωr by
vr = ωrR and therefore we have

vr − v0 = −

2

5
vr

From this we obtain vr = 5
7
v0. This means, that the rolling velocity is always five

sevenths of the original velocity regardless of mass and radius of the ball.

2. Rolling ball velocity curve

In this section we consider the form of the velocity curve for a ball which starts
slipping on the surface and then rolls.

The kinetic friction force is given by

Fk = µkmg

When the ball is slipping, the change in velocity is given by

v′ = µkg

This means that the change in the speed of the ball is linear.
The ball starts rolling without slipping when the velocity reaches 5/7 of the

start value. Then, the ball moves theoretically without friction. However, a golf
ball (such as the one used in RoboCup) is not exactly round. Also, the surface is
a carpet, so that the ball sinks and has to climb over the next section of carpet.
If the ball rolls too slowly, it cannot “climb” the carpet and stops moving. This is
called rolling friction.

Figure 1 shows the curve of the ball speed for a slow kick. One can see clearly that
at the beginning the ball is slipping and the change in velocity is linear and large,
due to kinetic friction. When the ball starts rolling, kinetic friction is suddenly
cancelled and rolling friction produces the deceleration of the ball. A perfect ball,
on a perfectly flat surface, would roll much longer. This ball is a golf ball, that
is, it is not completely spherical and the carpet is not perfectly flat. One can also
see that the knee of the curve is located at around 4 cm/s which approximately
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Figure 1. Speed of a golf ball in cm/s. The balls starts slipping
on the carpet, then rolling. Two linear functions have been fitted
to the data. At the end, the ball cannot “climb” over the carpet
and suddenly stops moving.
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Figure 2. Speed of a golf ball in cm/s. The velocity curve in this
example has the same structure as the previous one.

corresponds to 5/7 of the start velocity of 6 cm/s. When the velocity reaches a
threshold of around 2 cm/s the ball suddenly “dies”.

Fi. 1 makes clear that there is a phase transition in the movement of the ball
between the slipping and the rolling state. There is another phase transition when
the ball velocity reaches the 2 cm/s threshold. In Fig. 1 two lines were fitted to the
first two phases of the ball movement. This fit is better than a polynomial fit.

The best model for the ball, under the conditions we have been examining, is
one which takes into account these two phase transitions. Within a given phase,
the best model is a linear one.
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Figure 3. Optimal fit of two regression lines to the velocity data.

3. Experimental measurements

The analysis above is correct in terms of the two different phases that we can
observe in the ball’s movement. However, there is an experimental deviation from
the factor predicted by the theory.

We captured 26 shots with our computer vision system. Fig. 3 shows one of them
(velocity of the ball according to time). We tested systematically which subdivision
of the data points could yield the best regression fit using two lines with different
slopes. For the computation we just partitioned the data set into two subsets: data
left or at the partition point, and data right of the partition point. The sum of
minimal square errors for all data points relative to their assigned line is was used as
the cost function for the partition point. The point with minimal cost was selected
by inspection. Fig. 3 shows one of those optimal fits.

Using this approach we found out that, as predicted by the theory, the transition
from the gliding to the rolling phase occurs at a fixed factor of the initial velocity
v0. The factor differs from the theoretical factor and was found to be 0.5805 in
our experiments. The standard deviation of the factor is low, just 0.042. The
decceleration of our carpet on the ball during the gliding phase was found to be
-3.47 m/s2, and -0.305 m/s2 during the rolling phase. That corresponds to 35.4%
of g, the earth acceleration, and 3.1% of g, respectively.

Using this insight and experimental values we then computed a prediction of
the future ball movement as shown in Fig. ??. The prediction starts when the
ball velocity exhibits a sudden jump. We just decelerate the measured velocity
by 0.354g. After ten frames we recompute the initial velocity v0, which can be
estimated better with the additional data, and make a new prediction, as shown
by the lines in Fig. ??. We change the prediction from the gliding to the rolling
phase when the predicted velocity breaks the threshold 0.5805 ·v0. After this phase
transition the deceleration becomes 0.305g.



LIKE A ROLLING BALL 5

−4 −3.5 −3 −2.5 −2 −1.5 −1
0

50

100

150

200

250

300

350

400

time (secs)

V
el

oc
ity

 (
cm

/s
)

Prediction

Figure 4. Prediction of the ball velocity. The prediction is given
by the broken line, the actual measured velocity by the points in
the graph. The first prediction is done right after the first frame.
The corrected prediction trend is computed after ten frames. The
slight displacement of the line with the higher negative slope is due
to this correction.

The figure shows a very good correspondence of the prediction with the measured
values.

Having a good prediction for the ball velocity it is then straightforward to pro-
gram a good predictor for the ball position, just by integrating the predicted velocity
with respect to time.

The factor 0.5805 is different from the factor 5/7 = 0.71. The difference can be
due to the moment of inertia assumed for the rolling ball. The golf balls used in
our experiments do not have a constant density and their moment of inertia differs
from 2

5
mR2, the expression used in the calculations above.

4. Energy dissipated as heat

Assume that a robot moving at velocity v is pushing a ball of mass m and radius
R, which moves at the same velocity. If the ball is rolling without slipping on the
surface, then the rolling rotational velocity ωr is related to vr according to

vr = ωrR

The energy of the ball at this velocity is given by the kinetic and rotational energy.
The kinetic energy Ev is

Ev =
1

2
mvr

2

The rotational energy Eωr
is given by

Eω =
1

2
(
2

5
mR2)ωr

2 =
1

5
mvr

2
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This means that when the ball is rolling without slippage its total energy is

Er = Ev + Eω =
7

10
mvr

2

If the ball starts its movement slipping without rolling, with velocity v0, its initial
energy is

E0 =
1

2
mv0

2

When the ball starts rolling without slipping vr = 5
7
v0. The ball energy is therefore

Er =
7

10
m

(

5

7
v0

)2

=
5

14
mv2

0

The energy dissipated as heat is

E0 − Er =
2

14
mv0

2

that is, almost 2/7 of the original energy.

5. Dribbling without dribbler

The analysis above explains why a robot pushing a ball at a constant velocity
cannot lose the ball, if the robot constrains the rotational velocity of the ball.

If a robot is pushing a ball so fast that it does not rotate, whenever the ball loses
contact with the robot, the ball decelerates because kinetic friction transfers linear
to angular momentum. Even if robot and ball are moving originally with velocity v,
the ball starts decelerating towards 5

7
v, while the robot can continue moving at the

same speed. In other words: the ball cannot lose contact with the robot, because
the robot immediately overtakes the ball.

Assume that the robot is pushing the ball which is rotating at an angular velocity
ω = αωr, lower than ωr, (that is α < 1). The term ωr is the non-slippage angular
velocity. We know from the analysis above that if the robot lets the ball lose, the
ball will decelerate until it rolls without slippage. The ball then moves with velocity
vr = Rωr and

m(vr − v0) = −

2

5
mR(ωr − αωr)

Therefore

vr − v0 = −

2

5
vr(1 − α)

and then

vr =
v0

( 7
5
−

2
5
α)

Fig 5 shows the final velocity of the ball when it starts rolling as percentage of
the original velocity for different values of α. When the ball, for example, is only
rolling at alpha = 0.5 (half the angular velocity for rolling without slippage), and
the robot loses the ball, then the ball decelerates to 5/6 of the original velocity.

It would be interesting to compute the time it takes the ball until it decelerates to
rolling without slipping, but this computation depends on the coefficient of kinetic
friction, which must be measured experimentally.
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Figure 5. The curve shows the final rolling velocity as percent-
age of the original velocity, for different values of α.

6. Conclusions

When the golf ball rolls on the RoboCup carpet, energy is lost due to the elastic
properties of the carpet. The ball is rigid but not perfectly spherical, due to the
golf ball dimples. This produces some additional loss of energy.

When the ball starts moving with velocity v0, it slips on the surface until its
forward velocity is 5

7
v0. It then decelerates linearly until a threshold is reached and

the ball suddenly stops.
The deceleration when the ball is rolling comes from “rolling friction”, very

difficult to analyze since it depends on many factors. Apparently the deceleration
is constant and does not depend, in some range, on the forward velocity of the ball.

This analysis should make it possible to program a good ball movement predictor.
The data from the computer vision is rather noisy. It must be stabilized with a
Kalman filter in order to get a better predictor.

There are only two constants that have to be determined empirically. The kinetic
friction coefficient (which determines the slope of the first phase of the velocity
curve) and the deceleration on a rolling ball (which depends on the specific type
of carpet). There is a third constant which is not so important: the threshold of
velocity under which the ball movement collapses. Since this value is rather low
(under 1 cm/s) it does not affect the important calculations in real play.

Given the model it should be possible to compute all constants in the model
automatically, collecting data and fitting a two segment linear function. Plug &
Play.
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