
A hierarchy of reactive behaviors handles

complexity

Sven Behnke and Ra�ul Rojas

Free University of Berlin, Institute of Computer Science

Takustr. 9, 14195 Berlin, Germany

fbehnkejrojasg@inf.fu-berlin.de
http://www.fu-fighters.de

Abstract. This paper discusses the hierarchical control architecture

used to generate the behavior of individual agents and a team of robots

for the RoboCup Small Size competition.

Our reactive approach is based on control layers organized in a temporal

hierarchy. Fast and simple behaviors reside on the bottom of the hierar-

chy, while an increasing number of slower and more complex behaviors

are implemented in the higher levels. In our architecture deliberation

is not implemented explicitly, but to an external viewer it seems to be

present.

Each layer is composed of three modules. First, the sensor module, where

the perceptual dynamics aggregates the readings of fast changing sensors

in time to form complex, slow changing percepts. Next, the activation

module computes the activation dynamics that determines whether or

not a behavior is allowed to inuence actuators, and �nally the actuator

module, where the active behaviors inuence the actuators to match a

target dynamics.

We illustrate our approach by describing the bottom-up design of behav-

iors for the RoboCup domain.

1 Introduction

The \behavior based" approach has proven useful for real time control of mobile
robots. Here, the actions of an agent are derived directly from sensory input
without requiring an explicit symbolic model of the world [4, 5, 9]. In 1992, the
programming language PDL was developed by Steels and Vertommen as a tool
to implement stimulus driven control of autonomous agents [11, 12]. PDL has
been used by several groups working in behavior oriented robotics [10]. It allows
the description of parallel processes that react to sensor readings by inuencing
the actuators. Many basic behaviors, like taxis, are easily formulated in such a
framework. On the other hand, it is diÆcult and expensive to implement more
complex behaviors in PDL, mostly those that need persistent percepts about
the state of the environment. Consider, for example, a situation in a RoboCup
[2] soccer game in which we want to position our defensive players preferentially
on the side of the �eld where the o�ensive players of the other team mostly

2 S. Behnke and R. Rojas

concentrate. It is not useful to take this decision at a rate of 30Hz based on a
snapshot of the most recent sensor readings. The position of the defense has to
be determined only from time to time, e.g. every second, on the basis of the
average positions of the attacking robots during the immediate past.

The Dual Dynamics control architecture, developed by Herbert J�ager [7, 8],
arranges reactive behaviors in a two-level hierarchy of control processes. Each
elementary behavior in the lower level is divided into two modules: the activation
dynamics which at every time step determines whether or not the behavior tries
to inuence actuators, and the target dynamics, that describes strength and
direction of that inuence. Complex behaviors in the higher level do not contain
a target dynamics. They only compute an activation dynamics. When becoming
active they con�gure the low-level control loops via activation factors that set the
current mode of the primitive behaviors. This can produce qualitatively di�erent
reactions if the agent receives the same stimulus again, but has changed its mode
due to stimuli received in the meantime.

We extended the Dual Dynamics approach by introducing a multi-level time
hierarchy with fast behaviors on the bottom and slower behaviors towards the
top of the control hierarchy. We don't restrict the target dynamics to the lowest
layer, and add a third dynamics, the perceptual dynamics, to the system.

Dynamical systems have been used by others for behavior control. Gallagher
and Beer, for instance, used evolved recurrent neural networks to control a visu-
ally guided walking agent [6]. Steinhage and Sch�oner proposed an approach for
robot navigation formulated with di�erential equations [15]. Although planning
and learning have been implemented in this framework [14], it is not clear how
this non-hierarchical approach will scale to complex problems, since all behaviors
interact pairwise with each other. Steinhage also proposed the use of nonlinear
attractor dynamics for sensor fusion [13].

The remainder of the paper is organized as follows: In the next section we
explain the hierarchical control architecture. Section 3 illustrates the design of
behaviors using examples from the RoboCup domain.

2 Hierarchy of Reactive Behaviors

2.1 Architecture

Our control architecture is shown in Figure 1. It was inspired by the Dual Dy-
namics scheme developed by H. J�ager [7, 8]. In contrast to the two-level original
proposal, the robots are controlled in closed loops that use many di�erent time
scales and that correspond to behaviors on di�erent levels of the hierarchy. On
the lowest level we have few simple and fast behaviors. While the speed of the
behaviors decreases when going up the hierarchy, their number, as well as the
number of sensors and actuators, increases. This allows to model complex sys-
tems.

We extended the Dual Dynamics concept further by introducing a third el-
ement, namely the perceptual dynamics, as shown on the left side of �gure 1.

A hierarchy of reactive behaviors handles complexity 3

slow

Sensors Behaviors Actuators

Internal Feedback

fast

medium

Fig. 1. Sketch of the control architecture.

Here, either slow changing physical sensors, such as the charging state indica-
tors of the batteries, are plugged-in at the higher levels, or the readings of fast
changing sensors, like the ball position in soccer, are aggregated by dynamic
processes into slower and longer lasting percepts. The boxes shown in the �gure
are divided into cells. Each cell represents a sensor value that is constant for a
time step. The rows correspond to di�erent sensors and the columns show the
time advancing from left to right.

A set of behaviors is shown in the middle of each level. Each row contains
an activation factor between 0 and 1 that determines when the corresponding

behavior is allowed to inuence actuators.

The actuator values are shown on the right hand side. Some of these values
are connected to physical actuators that modify the environment. The other
actuators inuence lower levels of the hierarchy when used as parameters of faster
behaviors or generate sensory percepts in the next time step via the internal
feedback loop.

Since we use temporal subsampling, we can a�ord to implement an increas-
ing number of sensors, behaviors, and actuators in the higher layers without an

4 S. Behnke and R. Rojas

explosion of computational cost. This leads to rich interactions with the envi-
ronment, and therefore allows for complexity.

Each physical sensor or actuator can only be connected to one level of the
hierarchy. One can use the typical speed of the change of a sensor's readings to
decide where to connect it. Similarly, the placement of actuators is determined
by the time needed to make a change in the environment. Behaviors are placed
on the level that is low enough to ensure a timely response to stimuli, but high
enough to provide the necessary aggregated perceptual information, and that
contains actuators which are abstract enough to produce the desired actions.

2.2 Computation of the Dynamics

The dynamic systems of the sensors, behaviors, and actuators can be speci�ed
and analyzed as a set of di�erential equations. Of course, the actual computations
are done using di�erence equations. Here, the time runs in discrete steps of
�t0 = t0i � t0i�1 at the lowest level 0. At the higher levels the updates are
done less frequently: �tz = tzi � tzi�1 = f�tz�1, where useful choices of the
subsampling factor f could be 2, 4, 8, In �gure 1 f = 2 was used.

A layer z is updated in time step tzi as follows:

szi { Sensor values:

The nzs sensor values szi = (szi;0; s
z
i;1; : : : ; s

z
i;nz

s
�1) depend on the readings of

the nzr physical sensors rzi = (rzi;0; r
z
i;1; : : : ; r

z
i;nz

r
�1) that are connected to

layer z, the previous sensor values szi�1, and the previous sensor values from

the layer below sz�1fi , sz�1fi�1, s
z�1
fi�2,

In order to avoid the storage of old values in the lower level, the sensor values
can be updated from the layer below, e.g. as moving average.

By analyzing the sensor values from the last few time steps, one can also
compute predictions for the next few steps that are needed for anticipative
behavior. If the predictions in addition take the last few actuator values into
account, they can be used to cancel a delay between an action command and

the perceived results of that action.

�z
i { Activation factors:

The nz� activations �z
i = (�z

i;0; �
z
i;1; : : : ; �

z
i;nz

�
�1) of the behaviors depend on

the sensor values szi , the previous activations �z
i�1, and on the activations

of behaviors in the level above �z+1
i=f

. A layer-(z + 1)-behavior can utilize

multiple layer-z-behaviors and each of them can be activated by many (z+1)-
behaviors. For every behavior k on level (z +1) that uses a behavior j from
level z there is a term �z+1

i=f;k
T z
j;k(�

z
i�1; s

z
i) that describes the desired change of

the activation �z
i;j . Note that this term vanishes, if the upper level behavior

is not active. If �z+1
i=f;k

> 0, then the current sensor readings and the previous

activations contribute to the value of the T -term. To determine the new �z
i

the desired changes from all T -terms are accumulated. A product term is
used to deactivate a behavior, if no corresponding higher behavior is active.

A hierarchy of reactive behaviors handles complexity 5

Gz
i { Target values:

Each behavior j can specify for each actuator k within its layer z a target
value gzi;j;k = Gz

j;k(s
z
i ; a

z+1
i=f

).

azi { Actuator values:

The more active a behavior j is, the more it can inuence the actuator values
azi = (azi;0; a

z
i;1; : : : ; a

z
i;nz

a
�1). The desired change for the actuator value azi;k

is: uzi;j;k = �zi;j;k�
z
i;j(g

z
i;j;k � azi�1;k), where �

z
i;j;k is a time constant. If several

behaviors want to change the same actuator k, the desired updates are added:
azi;k = azi�1;k + uzi;j0;k + uzi;j1;k + uzi;j2;k + : : :

2.3 Bottom-Up Design

Behaviors are constructed in a bottom-up fashion: First, the control loops that
should react quickly to fast changing stimuli are designed. Their critical param-
eters, e.g. a mode parameter or a target position, are determined. When these
fast primitive behaviors work reliably with constant parameters, the next level
can be added to the system. For this higher level, more complex behaviors can
now be designed which inuence the environment, either directly, by moving
slow actuators, or indirectly, by changing the critical parameters of the control
loops in the lower level.

After the addition of several layers, fairly complex behaviors can be designed
that make decisions using abstract sensors based on a long history, and use
powerful actuators to inuence the environment.

3 Application to the RoboCup Small Size Competition

In the RoboCup [2] Small Size competition, �ve on �ve robots play soccer using
an orange golf ball. The area of the robots is restricted to 180cm2, and the
playground has the size of a table tennis �eld.

In the Small Size league, a camera is mounted above the �eld and is connected
to an external computer that �nds the position of the players and the ball and
executes the behavior control software. The next action command for each robot

Fig. 2. Kick-o� and a FU-Fighters robot kicking the ball (photo: Stefan Beetz).

6 S. Behnke and R. Rojas

target_dist

speed

drive fast slow downturn stopaccelerate

target_dir

difference

Fig. 3. Recording of two sensors (distance and direction of the target) and two actu-

ators (average motor speed and di�erence between the two motors) during a simple

taxis behavior. The robot �rst turns towards the target, then accelerates, drives fast,

slows down, and �nally stops at the target position.

is determined and sent via a wireless link to a microcontroller on the robot. The
robots move themselves and the ball producing in this way visual feedback.

We designed the team FU-Fighters for the RoboCup'99 competition, held in
Stockholm. We built robust and fast robots featuring a kicking device, as shown
in �gure 2. Local control is done using a Motorola HC05 microcontroller. The
robots receive the desired motor speeds via a wireless serial link at a rate of up
to 48Hz as commands. Each robot is marked with three colored dots that are
tracked at 30Hz from an NTSC S-VHS video signal. Further details about the
design of the FU-Fighters can be found at [1, 3].

The behavior control was implemented using a hierarchy of reactive behav-
iors. In our soccer playing robots, basic skills, like movement to a position and
ball handling, reside on lower levels, tactic behaviors are situated on interme-
diate layers, while the game strategy is determined at the topmost level of the
hierarchy.

3.1 Taxis

To realize a Braitenberg vehicle that moves towards a target, we need the di-
rection and the distance to the target as input. The control loop for the two
di�erential drive motors runs on the lowest level of the hierarchy. The two ac-
tuator values used determine the average desired speed of the motors and the
speed di�erences between them. We select the sign of the speed by looking at
the target direction. If the target is in front of the robot, the speed is positive
and the robot drives forward, if it is behind, then the robot drives backwards.
Steering depends on the di�erence of the target direction and the robot's main
axis. If this di�erence is zero, the robot can drive straight ahead. If the di�erence
is large, it does not drive, but turns on the spot. Similarly, the speed of driving
depends on the distance to the target. If the target is far away, the robot can
drive fast. When it comes close to the target it slows down and stops at the tar-
get position. Figure 3 shows an example where the robot �rst turns around until

A hierarchy of reactive behaviors handles complexity 7

the desired angle has been reached, accelerates, moves with constant speed to a
target and �nally decelerates. Smooth transitions between the extreme behaviors
are produced using sigmoidal functions.

In addition to the coordinates of the target position, we include some pa-
rameters of the taxis behavior as actuators on the second level. This allows to
con�gure the driving characteristics of the taxis. The parameters inuence the
maximal speed driven, the degree of tolerance to lateral deviations from the
direct way, the desired speed at the target position, the directional preference
(forward/backward), and the use of the brakes.

3.2 Goalie

This primitive taxis behavior can be used as a building block for the goal keeper.
A simple goal keeper could be designed with two modes: block and catch, as
shown in Figure 4. In the block mode it sets the target position to the intersection
of the goal line and a line that starts behind the goal and goes through the ball.

In the catch mode, it sets the target position to the intersection of the predicted
ball trajectory and the goal line. The goal keeper is always in the block mode,
except when the ball moves rapidly towards the goal.

Since our goalie is equipped with a kicking device, it can actively reect the
ball. This usually moves the ball to the opposite half of the �eld. Additional
behaviors ensure that the longer side of the goalie is faced towards the ball and
that the goalie does not leave the goal, although it has been designed to move
mostly parallel to the goal line.

3.3 Obstacle Avoidance

Since there are many robots and a ball that move quickly on the �eld, obstacle
avoidance is very important for successful play. We implemented a reactive colli-
sion avoidance approach on the lowest level of the control hierarchy. The robots

only avoid the closest obstacle, if it is between their current position and the

catch

block

robot_dir
robot_pos
ball_pos left_speed

right_speed

catchball_pos

target_posblock

speed

difference
movetarget_dist

target_dir

ball_dir

Fig. 4. Sketch of goal keeper behavior. Based on the position, speed, and the direction

of the ball, the goalie decides to either block the ball or to catch it.

8 S. Behnke and R. Rojas

taxis target. If such a situation is detected and a collision is likely to occur in the
next second, then the obstacle avoidance behavior activates itself. This inhibits
the normal taxis. The robot now decides whether it should avoid the obstacle by
going to the left or to the right. The position of the second closest obstacle, as
well as the position of the closest wall point and the taxis target are taken into
account for this decision. Since it is not useful to revise the avoidance direction
frequently, it is made persistent for the next second. The robot drives on a circle
around the obstacle until this is no longer blocking its way to the taxis target.

This fast reactive collision avoidance behavior should be complemented by
path planning implemented on higher layers, such that a global view of the �eld
is used and the activation of the collision avoidance behavior is minimized.

3.4 Field Player

The control hierarchy of the �eld player that wants to move the ball to a target,
e.g. a teammate or the goal, could contain the alternating modes run and push.
In the run mode, the robot moves to a target point behind the ball with respect
to the ball target. When it reaches this location, the push mode becomes active.
Then the robot tries to drive through the ball towards the target, pushing it
into the desired direction. If the line of sight to the goal is free, we activate the
kicking device before driving through the ball. This accelerates the ball such that
it is hard to catch for the goalie. When the robot looses the ball, the activation
condition for pushing is no longer valid and run mode becomes active again.

Figure 5 illustrates the trajectory of the �eld player generated in run mode.
A line is drawn through the ball target, e.g. the middle of the goal line, and the
ball. The target point for taxis is found on this line at a variable distance behind
the ball. The position behind the ball for activating the push mode is chosen
at a �xed o�set from the ball. Half the distance of the robot to this position is
added to the o�set to determine the distance of the taxis target from the ball.
The taxis behavior makes the robot always head towards the taxis target. As
the robot comes closer, the taxis target moves to the push mode point. This

Fig. 5. Trajectories generated in the run mode of the �eld player. It smoothly ap-

proaches a point behind the ball that lies on the line from the goal through the ball.

A hierarchy of reactive behaviors handles complexity 9

individual
behaviors

local view robot actuators

team
behaviors

team
aktuators

global view team

individual

Fig. 6. Sketch of the relation between the team and the individual robots.

dynamic taxis target produces a trajectory that smoothly approaches the line.
When the robot arrives at the push mode point, it is heading towards the ball
target, ready to kick.

3.5 Team Play

Each of our robots is controlled autonomously by the lower levels of the hierarchy
using a local view of the world, as indicated in Figure 6. We present, for instance,
the angle and the distance to the ball and the nearest obstacle to each agent.
In the upper layers of the control system the focus changes. Now we regard the
team as the individual. It has a slow changing global view of the playground and
coordinates the robots as its extremities in order to reach strategic goals.

One simple strategy used to coordinate the four �eld players is that only one
of them is allowed to go for the ball. The team evaluates the positions of the
players relative to the ball and the goal and selects the one that gets the highest
score. This player takes the initiative and tries to get behind the ball, dribbles
and kicks it towards the goal. The robots not chosen in this selection do di�erent
things. If they are defenders, they cover the attacking robots of the other team.
If they are o�ensive players, they position themself to be able to receive passes

and then have a free path towards the goal. If the chosen robot is not able to
get to the ball, the player with the second highest score is selected to take the
initiative.

Although we did not implement explicit passes, some implicit passes have
emerged during games. The most impressive ones are produced by a behavior
that tries to free the ball from corners by quickly rotating the robot. If the direc-
tion of the rotation is chosen such that the ball is moved towards the goal, the
ball frequently moved slowly across the �eld just in front of the goal. The o�en-
sive player waiting near the other corner of the goal area can now easily intercept

10 S. Behnke and R. Rojas

the ball and kick it into the goal. These short distance kicks are extremely hard
to catch for the goalie.

We also implemented a selective obstacle avoidance between the teammates.
The player that goes for the ball does not avoid its teammates. They must avoid
the active robot and move out of its path to the goal.

The �eld players are assigned di�erent roles, like left/right wing, o�ender,
defender. We implemented a dynamic assignment of roles, depending on the
actual positions of the robots, relative to home positions of the roles. This allows
to have more roles than robots. Only those roles most important in a situation
are assigned to players. This feature is needed when a robot detects that it does
not reach it's target position for a longer time. Then the robot signals the team
that is defect and the team does not assign further roles to this player until the
next stoppage in play.

3.6 Complex Behaviors

We implemented some complex behaviors for the RoboCup competition. They
include, for instance, dynamic homing, where the home positions of our defensive
players are adjusted such that they block the o�ensive robots from the other
team, and the home positions of our o�ensive players are adjusted, such that
they have a free path to the goal. Another example is ball interception, where we
predict the ball trajectory and the time it takes for the robot to reach successive
points on this trajectory. We direct the robot towards the point where it can �rst
reach such a point earlier than the ball. This results in an anticipative behavior.
We also detect when a robot wants to move, but does not move for a longer
time, e.g. because it is blocked by other robots or got stuck in a corner. Then
we quickly rotate the robot for a short time, in order to free the player.

For presentations, we added an automated referee component to the system.
It detects when the ball enters a goal and changes the mode of the game to
kicko�. Then the robots move automatically to their kicko� positions. When the

ball is detected in the middle of the �eld for some seconds, the game mode is
changed back to normal play.

In our current system, the deliberation of common goals among the au-
tonomous agents is not explicitly modeled. There is coordination among the
robots. The highest level in the hierarchy, the team level, assigns each robot a
role and keeps track of the robots. It is through their speci�c role that the robots
collaborate.

One example can illustrate this. When the left wing player drives the ball
through the �eld, the right wing player moves parallel to it. Once the left player
reaches the corner of the �eld, it rotates in order to free the ball and produces a
pass to the right. The pass will be taken by the right wing player or the central
o�ensive player that is waiting in front of the goal. The result is a situation
in which deliberation as bargaining is not present, but coordinated team play
produces results that mimic deliberation. Figure 7 illustrates such a successful
pass. It has been produced using the log-�le from the �nal game in the Melbourne
RoboCup competition.

A hierarchy of reactive behaviors handles complexity 11

(a) (b) (c)

Fig. 7. Successful pass: (a) the player in the upper corner frees the ball and sends it

towards the middle; (b) the center player receives the ball; (c) the center has kicked

towards the goal.

4 Summary

In the paper we described a hierarchical architecture for reactive control. This ar-
chitecture contains interacting behaviors residing on di�erent time scales. These
control loops are designed in a bottom-up fashion. Lower level behaviors are con-
�gured by an increasing number of higher level behaviors that can use a longer
history to determine their actions.

We illustrated the design of behaviors using examples from the RoboCup
domain. Our successful participation in the RoboCup'99 and '2000 F180 league
competitions, where we �nished second (next to Big Red, from Cornell Uni-
versity) and in the European RoboCup'2000, where we won, shows that the
architecture can be applied to complex multi-agent control problems.

One remaining problem is the design complexity. The higher the design pro-

cess advances in the hierarchy, the larger the number of sensors, behaviors, and
actuators becomes. It is therefore increasingly diÆcult to determine the free pa-
rameters of the system. To design larger systems, automated design techniques,
such as reinforcement learning, are needed.

References

1. P. Ackers, S. Behnke, B. Fr�otschl, W. Lindstrot, M. de Melo, R. Rojas,

A. Schebesch, M. Simon, M. Sprengel, and O. Tenchio. The soul of a new ma-

chine. Technical Report B-12/99, Freie Universit�at Berlin, 1999.

2. M. Asada and H. Kitano, editors. RoboCup-98: Robot Soccer World Cup II. Lecture

Note in Arti�cial Intelligence 1604. Springer, 1999.

12 S. Behnke and R. Rojas

3. S. Behnke, B. Fr�otschl, R. Rojas, P. Ackers, W. Lindstrot, M. de Melo, M. Preier,

A. Schebesch, M. Simon, M. Sprengel, and O. Tenchio. Using hierarchical dynam-

ical systems to control reactive bahaviors. In Proceedings IJCAI'99 - International

Joint Conference on Arti�cial Intelligence, The Third International Workshop on

RoboCup { Stockholm, pages 28{33, 1999.

4. R.A. Brooks. Intelligence without reason. A.I. Memo 1293, MIT Arti�cial Intelli-

gence Lab, 1991.

5. T. Christaller. Cognitive robotics: A new approach to arti�cial intelligence. Arti-

�cial Life and Robotics, (3), 1999.

6. J.C. Gallagher and R.D. Beer. Evolution and analysis of dynamical neural networks

for agents integrating vision, locomotion and short-term memory. In Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO-99) { Orlando,

pages 1273{1280, 1999.

7. H. J�ager. The dual dynamics design scheme for behavior-based robots: A tutorial.

Arbeitspapier 966, GMD, 1996.

8. H. J�ager and T. Christaller. Dual dynamics: Designing behavior systems for au-

tonomous robots. In S. Fujimura and M. Sugisaka, editors, Proceedings Interna-

tional Symposium on Arti�cial Life and Robotics (AROB '97) { Beppu, Japan,

pages 76{79, 1997.

9. R. Pfeifer and C. Scheier. Understanding Intelligence. MIT press, Cambridge,

1998.

10. E. Schlottmann, D. Spenneberg, M. Pauer, T. Christaller, and K. Dautenhahn.

A modular design approach towards behaviour oriented robotics. Arbeitspapier

1088, GMD, 1997.

11. L. Steels. The PDL reference manual. AI Lab Memo 92-5, VUB Brussels, 1992.

12. L. Steels. Building agents with autonomous behavior systems. In L. Steels and

R.A. Brooks, editors, The 'Arti�cial Life' route to 'Arti�cial Intelligence': Building

situated embodied agents. Lawrence Erlbaum Associates, New Haven, 1994.

13. A. Steinhage. Nonlinear attractor dynamics: A new approach to sensor fusion.

In P.S. Schenker and G.T. McKee, editors, Sensor Fusion and Decentralized Con-

trol in Robotic Systems II: Proceedings of SPIE, volume 3839, pages 31{42. Spie-

publishing, 1999.

14. A. Steinhage and T. Bergener. Learning by doing: A dynamic architecture for gen-

erating adaptive behavioral sequences. In Proceedings of the Second ICSC Sympo-

sium on Neural Computation NC2000 { Berlin, pages 813{820, 2000.

15. A. Steinhage and G. Sch�oner. The dynamic approach to autonomous robot naviga-

tion. In Proceedings of the IEEE International Symposium on Industrial Electronics

ISIE'97, pages SS7{SS12, 1997.

