
The Color and the Shape:

Automatic On-line Color Calibration for

Autonomous Robots

Ketill Gunnarsson, Fabian Wiesel, and Raúl Rojas
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Abstract. This paper presents a method for automatic on-line color
calibration of soccer-playing robots. Our method requires a geometrical
model of the field-lines in world coordinates, and one of the ball in im-
age coordinates. No specific assumptions are made about the color of
the field, ball, or goals except that they are of roughly homogeneous dis-
tinct colors, and that the field-lines are bright relative to the field. The
classification works by localizing the robot(without using color informa-
tion), then growing homogeneously colored regions and matching their
size and shape with those of the expected regions. If a region matches
the expected one, its color is added to the respective color class. This
method can be run in a background thread thus enabling the robot to
quickly recalibrate in response to changes in illumination.

1 Introduction

Color classification in the RoboCup Mid-Size League usually involves tedious
calibration procedures. A typical approach is to manually define which parts of
the color space correspond to a color class using some kind of GUI tool. This
involves capturing images from different positions on the field, defining the color-
boundaries between color classes, or classifying individual color pixels into one of
the color classes. This method is error-prone and time consuming. Furthermore,
a classification obtained at one point can fail at another, if the lighting conditions
are different. For this reason, all objects in the environment are strictly color-
coded and the organizers try to provide lighting that is as steady, bright and
uniform as possible.

Our method remedies the problem by automatically classifying regions of
homogeneous color into the following four color classes: field, ball, yellow goal,
and blue goal. Regions that do not fit the criteria of any of the classes are not
classified and can be considered obstacles. The white field-lines are detected
without the use of color information, and can be identified as non-obstacles. The
output of the method is essentially a separate list of color values for each color
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class. These lists grow over time, as more and more colors are classified. In our
application, we store these lists as a look-up table using the full 24-bit YUV
color depth.

The method can run on-line during a game to compensate for changes in
lighting, and is able to calibrate a whole image from scratch and error-free in 1-2
seconds. It is robust against false classification even with robots, humans and
other objects cluttering the field.

For each color class the method consists of the following steps:

• localize the robot on the field using edge detection(see section 2).
• loop:

- Grow a homogeneous color region (see section 3).
- Compare the grown region’s size and shape to the size and shape of the

corresponding expected region (see section 4).
- if the grown region is within the boundaries of the expected region, and

fills more than a certain percentage of the expected size:
– add all the colors in the grown region to the corresponding color class.

- else

– add no colors to the color class.

The homogeneity thresholds for the color growing are computed automati-
cally (see section 5).

Related work includes [5], which presents a method for off-line, semi-autonomous
color-calibration, implemented in the Mid-Size League. RETINEX, a biologically-
inspired algorithm is used for improving color constancy, and k-means clustering
is used for the adaptation of color classes. HSV thresholds are found from the
clusters that determine each color class, which are then manually mapped to
symbolic colors. This method analyzes the vicinity of colors in the color-space
and then forms clusters that represent color-classes. In contrast, the method pre-
sented here relies on the expected geometrical shape of the objects belonging to
a color-class and does not rely on color-space analysis. Furthermore, our method
is fully automatic, not requiring manual mapping to symbolic colors.

A method called KADC (Knowledge-based Autonomous Dynamic Colour
Calibration) is presented in [9]. KADC is a method for autonomous on-line color
classification, implemented in the Sony Legged League. KADC also utilizes the
geometric information of the field to define color classes, and then updates them
with the help of a color cluster similarity metric called EMD. Our method is
also based on geometric knowledge of the field, but we combine this with the
color-less detection of the robot’s position. We then update the classification
using only geometric criteria without having to incorporate any color similarity
metrics to previously established classification. This enables us to deal with an
abrupt increase/decrease in illumination, which is reported to be troublesome
when applying KADC(by [9]). What further differentiates our method from [9]
is that we also handle the ball color class.

In [6], Juengel et al. present an efficient object detection system (also im-
plemented in the Sony Legged League) which only requires a linear division of
the UV-color space. This system is extended in [7] to obtain a more fine-grained
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classification. The division is calibrated automatically, and the objects are heuris-
tically detected. However, such a linear division and the use of heuristics may
be inadequate for more demanding situations. For example when color classes
are not linearly separable, or when numerous color classes are required.

Austermeier et al. ([10]) find the color-correspondence between two illumina-
tion settings by using self-organizing feature maps (SOM) in color-space. Two
SOMs are built, one for the cloud of color points under the initial reference illumi-
nation and another one for the new illumination settings. The distance between
corresponding grid locations in the two maps is then used as a correction vector
for the set of color points belonging to that volume element. This solves the
problem of maintaining a classification, but does not generate it. Unfortunately,
the method is also very computationally expensive.

The method we present was tested on our Mid-Size robots, which are equipped
with an omni-directional vision system and use conventional sub-notebooks for
processing (see [4]). We now proceed with a step-by-step description of our cali-
bration method. We then describe how the thresholds used for the color growing
are found and adapted. Finally, we present experimental results.

Fig. 1. A tracked region (painted black) and white scan-lines along its edges. Here a
green region is being tracked. s and e are the start and end-points of the scan-line. p is
the actual point to be checked for edge criteria, and the points marked above, below,
left and right, are its neighbors used to determine the brightness around p.

2 Color-less localization

In order to allow image coordinates to be transformed into world coordinates,
the robot needs to localize itself in an initialization step. We do this by using a



4

region tracker (described in [2]), which stops growing a region when a possible
field-line is encountered. The stopping criterion is based on the assumption that
a field-line is bright compared to the neighboring points. In our implementation
we use 4 pixels to the left, right, above and below the actual point p, which have a
pixel distance from it corresponding to the expected field-line width (see Fig. 1).
We decide that a field-line is found if p is one standard deviation σ brighter than
at least two of its neighbors, where σ is the standard deviation of the brightness
of those pixels in the image which correspond to points on the field. The value
of σ is calculated on-line by sampling a certain number of random pixels in the
image.

Now we need to extract the pixels that coincide with the points of the white
field-lines. To accomplish this, we search for dark-white-dark transitions on short
scan-lines perpendicular to the edges of each of the tracked regions. This is done
in the following manner: find the brightest point p on the scan-line. Inspect the
endpoints s and e of an extended scan-line centered on p and having length twice
the expected field-line width (the length was tuned experimentally, the idea is
that s and e do not lie on the field-line, see Fig. 1). If p is σ-brighter than s and
e, declare it a white pixel corresponding to a point on a field-line.

The set of points obtained in this way is the input for our localization al-
gorithm. The localization exploits the presence of certain features in the field’s
line-model (center circle, corners, etc. see Fig. 2) and localizes the robot using
them and a force field matrix (Hundelshausen et al. describe this localization
technique in [1] and [3]). The localization we obtain this way is uniquely deter-
mined up to the symmetry of the field because we have no information about
the two goal box colors. Nonetheless, the method can proceed without it, as we
explain in the next section.

Fig. 2. Example of features found in the field-line contours. Here the center circle, a
T-junction and the inner and outer right penalty area corners have been successfully
detected. With these features the robot can localize itself on the field.
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A drawback of this localization is that more false field-line points are found
than with our conventional localization, which tracks green regions. It is also
potentially slower since more pixels are processed. Even though we could localize
the robot by calibrating the goal colors only (to break the field’s symmetry),
there is still a need for calibrating the color of the field. Without it we cannot
identify obstacles on the field.

3 Choosing Regions by Color Growing

The second step is to grow homogeneous color regions. It is not important to start
growing a region at a specific pixel, but choosing them intelligently can accelerate
the classification. This is achieved by building different sets of starting pixels for
each expected region. Subsequently, one pixel is chosen at random from each
set and separate color region growing processes are started (see figure 3). The
grown color regions are then passed along for further validation (see section 4).
Different pixel criteria are required to obtain the various pixel-sets we use for

Fig. 3. Regions grown successfully for an expected ball region, one of the expected
field regions, and an expected goal region. The grown goal region is enclosed by a
white curved line, the ball’s by a red curved line and the field’s by a green curved line.

the expected regions of the field, the ball, and the goals.

Since the green field color usually covers a large area of the image, a possible
method to obtain the field pixel-sets would be to pick a certain amount of ran-
domly chosen pixels and assign them to the pixel-set of the expected region they
correspond to. Instead, we gather pixels from our field-line detection procedure
which provides us with pixels that are close to a line, but not on one. These
pixels - excluding the ones corresponding to points lying outside the field, are
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then assigned to the pixel-set of the expected world region they correspond to
(there are 10 such field-regions, see Fig.4).

A goal-box pixel-set consists of pixels corresponding to points lying behind
one of the two goal lines in the field-model. The two goal-box pixel-sets are
separated by the spatial location of the goals. We decide later to which goal-box
the two sets belong (see section 4).

Since the ball can be small in the image and we don’t know where to look
for it (even if the robot’s position is known), it pays off to pick the pixel-set
for the ball color-growing carefully in order to make its classification faster. The
procedure we use only considers pixels corresponding to field-points (because
the ball is on the field). It then checks if a pixel has either been classified as the
ball color in a previous iteration of the calibration procedure, or if it could be
the center of an expected ball at that point. If this is the case, we add the pixel
to the ball pixel-set. Essentially this is a form of pre-validation that verifies if
a region starting from this pixel could ever grow into the expected ball at this
pixel. It does this by checking if pixels along the axes of the expected ball ellipse
are unclassified.

Growing a homogeneous color region works in the following manner: Starting
with a pixel p, neighboring pixels are inspected. If their color is within a certain
homogeneity threshold with respect to the color at p, they are added to the
color region. The neighbors of the newly added pixels are inspected in the same
manner, always comparing them to the color of the first pixel p. The homogeneity
thresholds are adapted automatically (see section 5).

4 Validating Grown Color Regions

After picking one point from each pixel-set and growing separate color regions
(one region for the ball, ten regions for the field, and two regions for the goals),
we need to make sure that they belong to the corresponding expected regions. To
ensure this, the regions have to pass through validation criteria. The criteria are
similar for each color class, and are based on the following observation: if a grown
color region r is totally inside and covers an expected region of a color class C,
then the colors in r are members of C. The expected regions are defined assuming
ideal conditions such as an obstacle-free field and perfect self-localization.

In the case of the field color class, we can define 10 expected regions in world
coordinates using the current field-model (see Fig. 4). In accordance with our
general guidelines, a grown field-color region should lie entirely inside one of the
expected regions. After checking that the region fulfills this criterion, we check
if it covers enough of the expected region. In our implementation we require a
field-color region to cover 70% of the corresponding expected region, and all of
its points to lie inside it. If the criteria are not fulfilled, we do not add any colors
from the region to the field color class in this iteration.

In the case of the goal-box color classes, we can use the field line-model and
the robot’s position to calculate at which angle in the image we expect a grown
goal-box-color region to appear. Furthermore, we know that this region cannot
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Fig. 4. The 10 expected field regions.

be inside any of the expected field regions. In our implementation we require a
goal-color region to lie between the angle defined by the goal-box’s posts, and to
cover 70% of the angle. We also require the goal-box to be clearly visible given
the current position of the robot, e.g. that the expected angle to the left and
right posts is sufficiently large. Furthermore, no point of the region can lie in any
of the expected field regions. If the criteria are not fulfilled, we do not add any
colors from this region to the respective goal-box color class in this iteration.

Once a grown goal-color region has been successfully validated, and its colors
have been associated with one of the arbitrarily chosen goal-boxes, the symmetry
of the field has been broken, and the sides can be labeled and recognized. Future
validated goal-color regions will therefore be assigned to the correct goal-box
color class. This is based on the assumption that the robot does not de-localize
and flip sides, while the illumination simultaneously changes to prevent goal-
identification. However, since there is a convention in RoboCup to paint one of
the goals yellow, and the other one blue, we compare a grown goal-color region to
a blue and a yellow reference color in our implementation. We then add it to the
class whose reference color is closer to the region’s mean color. This automates
the setup of the robot and also increases the robustness of the classification.

In the case of the ball color class, an expected ball region in the image has an
elliptic form where the size of the minor and major axis depends on the distance
from ball to robot. We represent the expected ball by storing ball-fitting ellipses
at different distances from ball to robot. One ellipse data entry consist of the
pixel distance from the robot to the center of the ellipse (the robot being in the
center of the image), as well as the minor and major axis of the ellipse, measured
in pixels. In our implementation we require all pixels in a ball-color region to
be inside the expected ball region, and the area to be more than 40% of the
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expected area. If the criteria are not fulfilled, we do not add any colors from the
region to the ball color class in this iteration.

Fig. 5. Grown regions which fail to meet the validation criteria. Pixels of the goal-box
and ball regions are outside the expected region, or the field region does not cover a
required percentage of the expected region.

5 Adaptive Thresholds for Color Growing

The thresholds for color growing are in general not the same for each color
class, and vary with lighting conditions. Furthermore, it is advantageous to use
various thresholds for the same color class in one and the same scene. This is
especially advantageous in the case of the field class, because it is large and
can therefore have wide variations in color homogeneity. Accordingly, we deploy
three separate sets of thresholds, one for each expected region of the field, the
ball and the goals. These sets are initialized with a constant amount of random
thresholds. The thresholds are then adjusted with the help of the validation
criteria outlined previously in section 4. Essentially, this means decreasing the
threshold if the region grown using it was too big, and increasing it, if it was too
small.

Before a region is grown, a threshold is picked at random from the cor-
responding set. If a certain threshold was involved in a successful growing, it
“survives” and is still part of the set in the next iteration of the calibration pro-
cedure. If a region growing has failed a certain number of times using the same
threshold, the threshold “dies” and a new randomly initialized threshold takes
its place in the set. Each time a region grown with a threshold is too big, we
decrease the threshold by a small random amount. If the region is too small, we
increase the threshold, and try to grow a region at the same point. We continue
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increasing the threshold until the region is successfully grown, or grows outside
the expected region.

6 Results

The method we present in this paper is able to adapt to changes in illumination
in a few seconds. We tested the method on our robots which are equipped with
a lightweight laptop having a Pentium III M 933 MHz processor, and 256 MB
RAM. For the run-time tests of the method we recorded how long it took to adapt
to an abrupt change in illumination. The scene we processed can be considered
a standard RoboCup scene with the ball in view, and a robot in the goal, except
that a foreign pink piece of paper is present in the field. Note that it will not be
classified since it does not fit any expected region. The results of the classification
can be seen in Fig.6. The first column shows the original images. The second
column shows a segmented image using the automatic classification from the
previous illumination setting without adjusting to the new illumination (the first
row has no previous classification). As we can see, under the new illumination
the color segmentation is poor. The third column shows a segmented image
after adapting the classification from the previous scene with our automatic
calibration method.

The runtime for the adaptation for row 1-4 was: 0.5, 0.8, 2.0, and 2.9 seconds,
respectively. The current implementation does not try to match the field-regions
inside the goal (regions 1 and 10 in Fig. 4), and therefore its colors are not clas-
sified in any of the scenes. The regions on the other side of the field are also not
classified since they are obscured, and hence can not be matched to the corre-
sponding expected regions. The first row demonstrates the classification under
a mixed neon - and indirect floodlight. All regions that are clearly visible have
been successfully classified. The same goes for the second row, which displays
a darker scene with neon lighting only. The third row shows a classification
under neon lighting, and with one floodlight directed down on the field. Here
the method fails to classify some of the brightest green colors lying under the
floodlight after 2.0 seconds, but after letting the method run for about 12 sec-
onds, the classification improves (not illustrated), without managing to classify
some of the extremely bright green colors. The fourth and last row of images
was captured under neon lighting and with three floodlights directed down on
the field. A successful classification of this scene was obtained after 2.9 seconds.
Note however, that the colors of the inner penalty area are not classified. This
is due to the fact that the goalie is placed in the middle of it, and thereby cuts
the homogeneous color region in half. It can therefore not be matched properly
to the expected area of the inner penalty area.

Fig.7 illustrates the performance of the method where the robot is close to
a border line and sees a large area outside the field. The classification (on the
right) was obtained after a few second with no previous classification. Here the
ball and the goals are too far away to be calibrated.
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Fig. 6. Row 1 to 4 (counting from top to bottom): Original images on the left, static
classifications from previous illumination setting in the middle, and the result of the
automatic classifications on the right. The CPU-time it took the method to produce
the automatic classifications (right), starting with the classifications achieved from the
prior illumination (middle) for row 1-4 was: 0.5, 0.8, 2.0, and 2.9 seconds, respectively.
The color code is: white = unclassified, gray = field, check-board-pattern = blue goal,
diagonal-pattern = ball.
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Fig. 7. The classification (on the right) was obtained after a few second with no previ-
ous classification. Here the ball and the goals are too far away to be calibrated so only
the field can be calibrated. The color code is: white = unclassified, gray = field.

7 Future Work and Summary

The method encounters certain problems when colors belonging to a color class
are present in regions not belonging to the class. This is for example the case
when the blue goal is so dark that some colors in it are indistinguishable from
the ones appearing in robots. In this case, a very dark-blue or black region is
grown inside the goal, which is found to correspond to the expected goal region.
The method then defines these colors as belonging to the blue goal color-class
even though they are encountered in robots as well. Another potential weakness
of the method is that a color does not become “outdated”, e.g. a color cannot
loose a previous classification. This can present a problem when the lighting is
changed, for example from white neon lighting to a more warm, yellow lighting.
Now, colors that were previously classified as the yellow goal can appear on the
white field-lines. A possible solution would be to mark a color as not belonging
to a class if it occurs in an unexpected region. Another approach used in [9],
would be to incorporate a color decay factor.

A method for tuning the camera-parameters is presented in [8], and could
be combined with our method to enable the robot to operate in a wider range of
lighting-conditions. The “ground truth” (manually defined color classes) needed
in that method could be provided by our automatic calibration.

In this paper we presented a method that can be used for automatic color
calibration of autonomous soccer playing robots. It is based on a color-less local-
ization of the robot, a geometric line-model of the field and a geometric model
of the ball. The method needs no manual calibration and can deal with various
difficult lighting conditions that change abruptly over time. It can be integrated
into existing systems and will be used by our robots at RoboCup 2005 in Osaka.
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