
A Neural Coach for Teaching Robots Using Diagrams

Bastian Hecht, Mark Simon, Oliver Tenchio, Fabian Wiesel, Alexander Gloye, Rául Rojas
Freie Universiẗat Berlin
Institut für Informatik

Takustraße 9, 14195 Berlin
Germany

{bhecht,simon,tenchio,gloye,rojas}@inf.fu-berlin.de

Abstract

In this paper we show how to train soccer robots
using static game situations in diagrams arranged
by a human coach. Rather than programming every
detail by hand, we let the robots learn from strate-
gic examples sketched by the coach. With our ap-
proach, the coach defines new game positions and
indicates to the players how to react to them, like
in real soccer. We have implemented a manage-
ment tool to collect and organize all the game po-
sitions entered by the coach. The game situation is
encoded as a feature vector, which is used to train
a neural network. The network learn to general-
ize and give advice on the best option for a player.
The general method is illustrated with the specific
case of robots learning to pass. The method can be
generalized to other tasks and to several networks
encoding different game strategies.

1 Motivation
RoboCup robots are usually programmed by hand. Learn-
ing techniques, such as reinforcement learning, have been
used for several years in the simulation league[3]. In the ro-
botic leagues it is more difficult to automatically learn high-
level skills, and therefore learning has been mostly used to
allow robots to automatically adapt the parameters of low-
level skills[2]. It is also clear why: we cannot let real robots
play against themselves hundreds of times, so that they learn
to behave successfully.

An alternative could be a simulation, but an exact model of
the robots is never so exact that a simulation could be used as
a complete substitute[9]. On the one hand, it is hard to have
an errorless prediction of the driving behavior of real robots.
On the other hand, very small changes in hardware can lead
to significantly different characteristics, such as more orless
ball control when driving.

In this paper we investigate a second option. We want to
supply our small-size robots with our own human knowledge
about soccer. Until now, we have achieved respectable ro-
bot behavior mostly using manual hard coding and tuning the
code in long and difficult “training” sessions. We would like
to teach the robots in the same way a human coach explains

plays to human players: using static diagrams of what consti-
tutes a good and what constitutes a bad move. What we pro-
pose is that a human coach draws interesting game situations,
for example for passing[4], and then assigns them a “good”
or “bad” grade. The computer should then learn to generalize
from such examples to new and unseen game situations.

Entering enough examples into the system, it is then pos-
sible to train a neural network which can achieve the desired
generalization. The coach trains the robots with examples,
and the robots learn to do the right thing. Moreover, by keep-
ing separate databases of offensive or defensive strategies, it
is possible to train several neural networks for different styles
of play. We then can integrate an external agent (a coach, as in
the simulation league), which can provide advice on the best
strategy for the current adversary[2]. The robots can then
switch their strategy dynamically according to this advice.

2 Setting up Training Examples of Game
Situations

The first step for training the robots with our approach is to
set up some examples of possible game situations. For this
we can use our simulator for the small-size robots. From now
on, let us assume that we want robots to learn how to pass the
ball (and receive it). The player with the ball will be calledthe
“passer”, and the player receiving the ball will be called the
“receiver”. Figure 1 shows a scene in which player 0 should
pass the ball to player 1, which is waiting for the pass. With
our simulator, the user can set up such a game situation by
dragging players from each team to the desired position.

In what follows, we focus only on a passer and a single
available receiver. Later on, we generalize our techniquesto
take all other field players into account.

Once an example has been entered by the coach, we save
all relevant information in an XML-file. In the experiments
described in this paper, we have used static situations, where
the speeds of all robots and the ball are zero. However, the
same general approach can be applied to dynamic situations.
For every stored game situation, we associate with it infor-
mation that reflects our belief on the correct decision for the
the potential passer (giving the pass or not). In the case of
the passing game, we store a real numberx ∈ [−1; 1]. In our
system, we apply the convention that whenx ≤ 0.0 dribbling
is desirable, and that whenx > 0.0 passing is desirable.



Figure 1: A static game situation entered by the human coach

3 Encoding Relevant Features
In order to generalize from the stored examples, it is crucial to
look not at the coordinates of the robots, but to some features
of the game situation. If we would just encode the coordinates
of the robots on the field, and would give this information to a
neural network, the net would have extreme difficulties trying
to generalize to new game situations. A barrier of players, for
example, is a feature that looks similar in almost all places
in the field, although the coordinates are of the robots can be
very different.

We need to encode the field using a numerical feature vec-
tor. For example, a possible feature is the free space around
the ball receiver. This feature is very relevant because it does
not pay to give a pass to a player which will be trapped.

By encoding the game situation with a feature vector, we
necessarily lose information because we cannot reconstruct
all robots’ positions from the features, but we obtain a more
abstract view of the field. The information given to the net
has a better format, since important field aspects are encoded
numerically.

Back to our passing example. Conceptually, the features
we use are split up into two parts, the features having to do
with dribbling (that is, driving with the ball), and the features
having to do with ball reception. The features are independent
from the training method used.
The features associated with dribbling are:

1. Dribbling freedom
This parameter describes the space available for drib-
bling with the ball, before an opponent appears (in the
direction of the opponent’s goal). This parameter re-
flects the time that it would take the nearest opponent
to interfere with the dribbling path of my robot.

2. Dribbling angle
This is the angle defined by the position of the passer,
the middle of the opponent’s goal line, and the nearest
corner of the field. A robot positioned at an opponent’s
corner, for example, has a dribbling angle of zero. A
robot in the middle of the field, has a dribbling angle of
90 degrees. A larger dribbling angle means that more
space for dribbling is available.

3. Dribbling distance to the goal

This is the just distance from the passer to the goal line.

The next five features describe the reward obtained from
passing. We can visualize these features in the following way:
The player on the left has the ball, and ponders whether to
give a pass. The player on the right is only a symbol for a
receiver at one position. In fact, we displace the pass receiver
over a grid of17x21 points covering the field, and calculate
at each vertex the features. The results are illustrated in the
following figures.

4. Space available
This parameter encodes the distance from the receiver up
to the nearest opponent. It is large when the opponents
are far away, it is small when an opponent is near. Fig.
2 shows, with a white marker, those portions of the field
where there is much space available, and with black the
space dominated by opponents.

Figure 2: Space available: White areas of the field are rela-
tively opponent-free, dark areas are not

5. Passing angle
This is the same feature we had above (dribbling angle),
but now for the receiver. A high passing angle means
that it is good to receive passes, for example in the mid-
dle of the field. A low passing angle means that it is not
so good to receive a pass, for example, at the corners or
near the sides of the field. Fig. 3 shows with a white
marker those positions in the field which offer a good
passing angle, and in dark those positions with a worse
passing angle.

6. Minimal tangent distance
This value is the shortest distance an opponent has to
move in order to block a pass. Fig. 4 shows, in black,
those field areas where a pass can go through. The white
areas can be blocked by the opponents. In the example,
the receiving robot (lower right) is too near to an oppo-
nent. It would be better if the receiving robot was lo-
cated at some point in the diagonal corridor going from
the middle of the field to the upper right.

7. Waiting time during passing
This feature is the time elapsed after an opponent has
moved to a new position, where a pass can be blocked,



Figure 3: Passing angle: White areas of the field provide a
good passing angle, dark areas do not

Figure 4: Minimal tangent distance: In dark areas of the field
the distance to block a pass is large, in white areas not

and the instant where the ball arrives. An opponent with
a large waiting time can block a pass easily. An oppo-
nent with negative waiting time cannot reach the ball.
Fig. 5 shows an example where the dark areas cannot be
easily reached by the opponents to stop a pass, while the
white or gray areas can be reached easily. This is proba-
bly one of the main criterions which need to be used for
deciding to give a pass or not.

8. Dribbling freedom for the receiver after a pass

This is the same parameter as ”dribbling freedom” for
the robot with the ball, but now for the robot receiving
the pass. Fig. 6 shows the regions of the field where
receiving a pass provides high reward (in black) and low
reward (in white).

It is worth noting that all these features encode symmetri-
cal field positions with the same numbers. If we had stored
the coordinates of the robots, we would have to store all the
symmetrical cases every time we enter an example. The fea-
tures described above take care of encoding all symmetrical
field positions with the same feature vector. The classifier has
an easier task, once the symmetries of the learning problem
have been incorporated in the encoding.

Figure 5: Waiting time: Opponent robots in white areas can
wait longer for the ball when a pass is coming

Figure 6: Dribbling freedom for the receiver. Dark areas indi-
cate much free space, bright areas are covered by opponents

4 Training neural networks

We have written a tool to keep track of all the examples of
game situations defined by a human coach (or several human
coaches). We can group the examples in several categories to
have a better overview of them and to activate and deactivate
particular example groups.

By activating and deactivating groups, we can train differ-
ent neural networks to encode different behaviors. For exam-
ple, if an opponent has the ability to block long passes across
the field, we can deselect all examples where long passes are
considered “good”, and we can train a network which behaves
essentially as the original one, except for its reluctance now
to propose long passes across the field.

We achieved good classification results using a three-layer
feed forward network[6]. The network has 8 input nodes -
the features seen in section 3 - and a hidden layer, whose di-
mension can be set arbitrarily. Right now, we usually have 14
hidden nodes. The output node emits a value that indicates the
action that should be taken. An output in the interval(−∞; 0]
is interpreted as “Do not pass”, while an output in(0;∞) as
“Do pass”. The neural network we use, has already reached
a size where it is questionable whether it would be good to
let it grow further. One would need too many examples to



Figure 7: This is the output of a trained neural coach. If a
teammate stands in one of the 2 pink areas, the left player
with the ball should pass.

Figure 8: The topology of the neural network used as passing
coach

cover all degrees of freedom of the network. Right know, we
have stored around 100 examples in our system. The effort is
worth it: game situations are created quickly with our simu-
lator, and the results we obtain have good quality.

The trained networks can be saved, and it is possible to use
them for behavior control. In our current system, the eventual
passer first ponders shooting a goal. This behavior inhibits
all others. If shooting is unfeasible or not so good, the robot
considers whether to dribble or to pass. The system iterates
over all team mates (as possible receivers of a pass), and asks
the coach whether it would be good to pass or not. If there
are more than one well positioned receivers, the passer robot
selects the one for which turning towards it is easier.

5 Conclusion
We have developed a “neural coach” for our small-size ro-
bots. The coach is a neural network which accepts game situ-
ations encoded as a feature vector, and which provides as out-
put a number reflecting the best alternative: dribbling withthe
ball or passing. The robot with the ball can periodically ask
the neural network which is the best strategy, and can apply
it.

Our behavior control system has grown with the years and
contains many parameters which must be tuned by hand. It
is difficult to modify them when the hardware changes, also
because the many programmers work with our system. Our
coaching tool is a decisive step towards abandoning such

Figure 9: Our management tool saves static examples of
game situations. The examples can be deleted, or organized
in groups which correspond to alternative offensive strategies.

hand-tuned implementations, in favor of a more general ap-
proach.

Many other game decisions could be modelled in the way
described in this paper, like for example the team formation,
or individual behaviors of a robot (”I am the goalkeeper and
see a opponent dribbling to my goal. My defenders are far
away. Shall I come out of my goal to decrease the shooting
angle or not?”).If the behavior control system can also learn
the low-level skills, such as driving, or dribbling with theball,
using reinforcement learning or other machine learning al-
gorithms, one obtains a more versatile robotic platform, and
code which is easier to manage and maintain.

References
[1] [Fidelman and Stone, 2004] Peggy Fidelman and Peter

Stone. ”Learning Ball Acquisition on a Physical Robot”.
In 2004 International Symposium on Robotics and Au-
tomation (ISRA), August 2004.

[2] [Kuhlmann and Stone, 2005]. Gregory Kuhlmann and
Peter Stone. ”The UT Austin Villa 2003 Champion Simu-
lator Coach: A Machine Learning Approach”. In Daniele
Nardi, Martin Riedmiller, and Claude Sammut, editors,
RoboCup-2004: Robot Soccer World Cup VIII, Springer
Verlag, Berlin, 2005. To appear.

[3] [Lauer and Riedmiller, 2004] M. Lauer and M. Ried-
miller. ”Reinforcement Learning for Stochastic Cooper-
ative Multi-Agent Systems”. In Proc. of AAMAS 2004,
New York, USA

[4] [Kok et al., 2003] Kok, Jelle R.; Spaan, Matthijs T. J.;
Vlassis, Nikos. ”Multi-robot decision making using co-
ordination graphs”. In Proceedings of the 11th Interna-
tional Conference on Advanced Robotics, ICAR’03, pp.
1124-1129, Coimbra, Portugal, June 2003.

[5] [Lipson and Shpitalni] Lipson, H.; Shpitalni, M. ”Con-
ceptual Design and Analysis by Sketching”. In Journal of



AI in Design and Manufacturing, Vol. 14, pp. 391-401,
2000

[6] [Raul Rojasm, 1996] Rojas, Raul. ”Neural Networks - A
Systematic Introduction”. Springer-Verlag, Berlin, 1996.

[7] [Egorova et al., 2004] Egorova, Anna; Gloye, Alexan-
der; G̈oktekin, C̈uneyt; Liers, Achim; Luft, Marian; Ro-
jas, Rául; Simon, Mark; Tenchio, Oliver; Wiesel, Fabian.
“FU Fighters Small Size Team 2004”. in N.N. (editors):
RoboCup-2004: Robot Soccer World Cup VIII, Springer,
2005.

[8] [Behnke et al., 2000] Behnke, Sven and Rojas, Raúl. “A
Hierarchy of Reactive Behaviors handles Complexity”.
in: Proceedings of: Balancing Reactivity and Social De-
liberation in Multi-Agent Systems, a Workshop at ECAI
2000, the 14th European Conference on Artificial Intelli-
gence, Berlin, 2000.

[9] [Gloye et al., 2005] Gloye, Alexander; Göktekin, C̈uneyt;
Egorova, Anna; Tenchio, Oliver; and Rojas, Raúl.
“Learning to Drive and Simulate Autonomous Mobile
Robots”. in N.N. (editors): RoboCup-2004: Robot Soc-
cer World Cup VIII, Springer, 2005.


