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Abstract. In this paper we present a simple and new algorithm that
tracks the contour of several homogenous regions in a sequence of images.
The method exploits the fact that, when i.e. observing a moving object
(exposing a homogenous region), the regions in two consecutive frames
often overlap. We show that the method is valuable for the RoboCup
domain: It allows to track the green playing field and the goals very
efficiently, to detect the white marking lines precisely, enabling us to
recognize features in them (the center circle, the quatre circles, corners,
the rectangle of the penalty area,...). It is also useful to find the ball
and the obstacles. Furthermore, it provides data for path planning based
on potential field methods without further computation. We compared
the algorithm with the fastest existing method and measured a speed
enhancement of 30 percent. In contrast to other methods, our algorithm
not only tracks the center of blobs but yields the precise boundary shape
of the objects as a set of point sequences. First tests with real world data
have confirmed the applicability for other domains than RoboCup.

1 Introduction

The algorithm presented in this paper emerged from our aim to localize our
middle size robot by detecting the marking lines on the playing field. Our robot
is equipped with an omnidirectional catadioptric vision setup, with the cam-
era looking upwards into a convex mirror. In order to recognize features like
the center circle, the quatre circles, corners, rectangles, T-junctions, etc., it is
important to detected the lines precisely in the images, without false positives
and last but not least connected. The latter issue is important for fast feature
detection. Only if the order of line points is known, we can efficiently calculate
curvature measures and tangent directions, which is important for both, relative
matching as described in [14], and feature recognition.
To detect the marking lines the straight forward way is to use an edge detec-
tor. Possible solutions could be based on the Roberts Cross Edge Detector[19],
the Sobel Edge Detector [18], the Canny edge detector[6], the compass operator
[20], edge detectors using the Laplacian of Gaussian, Gabor filters[16] or wavelet
based solutions [15]. However, applying such a scheme to the whole image is
time consuming. In particular, when processing 15 up to 30 frames per second
for real-time vision, it is important to restrict the area within the image to which



the detector has to be applied. Furthermore, the problem of connecting the de-
tected edge points remains [8]. Another approach, which can be found in [11],
uses the Hough transform [10] for grouping, but this is not efficient.
To overcome the problem of linking model based prediction of edges has been
used extensively over the last years [3]. However, the problem is that the model
has to be known, and that the initial pose must be given. Although the determi-
nation of the initial pose is possible by propagation of a probability distribution
[2], it is time consuming. Moreover, problems with matching under larger trans-
lations are known [7], since the models converge to local minima.

We approached the line detection problem differently: The idea is to detect
the regions between the lines (see figure 1a). Since their boundaries neighbor the
lines, they can easily be recognized: Just step around the boundaries, calculate
the normal of the boundary curve at the actual position and apply a direction
specific detector. For instance, search for a green-white-green transition.

(a) (b)

Fig. 1. (a) The green regions are tracked. The boundaries of the regions are visualized
by black lines. They are represented as sequences of points. (b) Objects are searched
along the boundaries. Black points mark detected obstacles, for the marking lines three
points are investigated along the normal. One on the line, and two at each side of the
line to verify a green-white-green transition. Detected ball points are painted black for
the sake of visibilitiy.

The method is also useful for detecting the obstacles and the ball: Just look
for something orange or black next to the boundaries of the green regions (figure
1b). Doing so, false balls outside the playing field are not detected since they are
not next to a green region in the image.

In this paper, we will show how the regions and their boundaries can be
tracked very efficiently. We use the results of the last image to calculate the
solution for the next, and on average only 10 percent of the pixels have to
be accessed per frame. Our tracking algorithm is based on the region growing



paradigm [4][22] [21][1][9][17]. However, we extend the paradigm to track regions
over time.

The remainder of this paper is organized as follows: Section 2 reviews the
basic region growing algorithm and describes the key observation that leads to
the extension of the algorithm. In section 3 we describe the boundary extraction.
Section 4 illustrates the generality of the algorithm. Section 5 shows results of
the algorithm applying it within the RoboCup domain and comparing it with
the currently most used tracking algorithm by robotic soccer vision systems[5].
Finally, section 6 concludes the paper.

2 Extending the Region Growing Paradigm

We first give a short review of a specific region growing algorithm which will be
extended afterwards.

2.1 Region Growing by Pixel Aggregation

In Region Growing by Pixel Aggregation one starts with a small region (i.e. a
single pixel) and consecutively adjoins pixels of the region’s neighborhood as
long as some homogeneity criterion is fulfilled. This method can be implemented
in the following way: We reserve a two-dimensional array V which has the same
size as the image and which has a boolean entry for each pixel that indicates
whether the respective pixel has been visited yet. Further, we maintain a queue
Q that stores the spreading boundary pixels (their coordinates) of the region
during the execution of the algorithm. We refer to the stored elements in Q as
drops, following the idea that we pour out a glass of water at the seed pixel and
that the drops of this water spread over the region. Q just stores the boundary
drops at each time during the execution of the algorithm. Initially, if we start
with a single pixel, Q stores a single drop corresponding to the pixel which is also
marked as visited in V . The algorithm continues with a loop which is performed
as long as any drops are stored in Q. In each pass of the loop one drop is extracted
from the queue and the neighboring pixels are investigated. In the case of a 4-
neighborhood we inspect the top, right, bottom and left pixels. After assuring
that the pixels have not yet been visited, respectively, we determine whether
they hold for a specific homogeneity criterion, color similarity for instance. For
each pixel that conforms with this condition a new drop is instantiated and
stored in Q. After the loop terminates Q is empty and the region is marked in
V . Figure 2 shows an example of a growing process that finds the region of the
yellow goal.

2.2 The Key Observation

Our goal is to efficiently track regions over time. To give a specific example, we
want to track the yellow goal, while the robot moves. Assume, that the robot
starts at pose PA and takes an image IA. Then the robot moves a little to pose PB



Fig. 2. The array V is visualized by the dark gray surface (visited elements). The white
circles represent the drops. Here, the algorithm does not work on single pixels, but on
blocks of 4 × 4 pixels.

and takes another image IB . Assume further that we have determined the region
A of the yellow goal in IA and the corresponding region B in IB by the above
region growing algorithm. If the video frequency is high enough with respect
to the movement of the robot, then the two regions will overlap as depicted in
figure 3. If we apply the region growing algorithm separately to image A and

(a) (b) (c)
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Fig. 3. The regions of the yellow goal are determined (a) before and (b) after the robot
has moved. (c) The two regions overlap.

B, then the running time for each is linear in the number of pixels (or blocks
of pixels) within the respective regions. We want to develop a more efficient
method. Assume that we have extracted region A, then roughly speaking, we



want to use the drops of the region growing of A to somehow flow to the region
of B by making use of the overlap. The drops of region A should first shrink to
the intersection S of A and B and then grow to the boundary of B. Thus, in
order to find region B we don’t start with a seed pixel, but with a whole seed
region, the intersection of A and B. To realize the algorithm a method of how
to shrink region A to the intersection of A and B has to be developed. This will
be done in the following subsection.

Fig. 4. The region shrinks until it vanishes. For this process no image information is
used.

2.3 Shrinking Regions

We will develop the shrinking method in two steps. First we consider the case of
shrinking a region without stopping criterion. That is, the region shrinks until it
vanishes. Next, we modify the method so that shrinking stops at the intersection
of A and B.
In the first step, we don’t need any image information but just the array V in
which region A is marked and a queue of drops at the boundary of that region.
As we will need two different queues for growing and shrinking later, we denote
the queue used here as Q′ to avoid confusion. We apply the same operations
as in region growing with one exception: We reverse the meaning of V . As a
result, the drops can only spread within the region marked in V and since they
initially are placed at the boundary their only means of escape is to move from
the outer to the inner of the region. Instead of marking elements in V , as in



Fig. 5. The region shrinks up to the intersection area, that means, until all drops are
within the region of the new image.

region growing, entries in V are cleared while the drops spread. At the end, Q′

is empty and V is cleared completely. This process is illustrated in figure 4.
In the second step we use image IB to determine when shrinking should stop.

We emphasize that the initial region (marked in V ) is due to image IA while
only image IB is referenced during shrinking. Each time after a drop has been
extracted from Q′ we verify the homogeneity criterion for the corresponding
pixel in image IB . If the pixel belongs to the region, then the drop is not allowed
to spread anymore. As a result the region shrinks to the intersection of region
A and B as depicted in figure 5. This is exactly inverse to the growing, where
drops only spread to neighbors that fulfill the homogeneity criterion.

2.4 Alternating Shrinking and Growing

Region growing is a well known technique which was extensively studied 20 years
ago. However, our new contribution is that region growing can also be used to
shrink regions and that alternation of shrinking and growing allows to track large
regions extremely efficiently.
To alternate shrinking and growing in order to track regions some problems con-
cerning the interface between the two stages must be solved. The first problem is
that after growing the queue of drops is empty but shrinking initially requires a



list of drops at the boundary of the region. In the same way shrinking ends with
an empty list of drops, but growing requires seed drops. To solve this problem
each of the two processes, growing and shrinking, has to build the initial queue
for the other procedure. We accomplish this by using two queues, Q and Q′.
Growing assumes the initial drops to be in Q and after execution Q is empty
and Q′ has been built up which stores the initial drops for shrinking. Shrinking
runs with these drops and initializes Q for the next growing.
During growing, when the neighbors of an extracted drop are inspected, the
drop is inserted into Q′ as initial drop for shrinking, if any of its neighbors does
not belong to the region. Vice versa, a drop that is extracted from Q′ during
shrinking is inserted to Q as initial drop for growing, if shrinking stops for this
drop.

2.5 Controlling the Tracking

Since the tracked regions can be lost if the movement between two consecutive
images is too large, a control mechanism has to be integrated into the loop of
shrinking and growing. The control mechanism checks whether tracking has lost
the region. In this case an initial search has to be started. Depending on the
application this procedure might search within the whole or just within a part
of the image for a pixel or a block of pixels having a certain color or texture that
satisfies the homogeneity criterion and maybe some other detection criterion.
Later, we also describe how to extract the polygonal shape of the regions. If
a region gets lost, and an initial search is started, then first several regions
can be tracked and by using the information about the size and shape of the
regions some of them can be discarded. In this way the computational power is
concentrated on the regions of interest. To exclude a region from being tracked
one simply has to delete its entries in V and the corresponding drop queues. This
can be accomplished by a shrinking without stopping criterion as illustrated in
figure 4.

3 Boundary Extraction

The boundary of each region consists of a chain of small edge vectors (see figure
6a). Each edge vector represents one of the four sides of a pixel and the last edge
vector ends at the beginning of the first. During the growing phase, when a drop
reaches a border, the corresponding edge vectors are inserted into a special data
structure, the connectivity grid. It is a two-dimensional array, one wider and one
higher than the image. The cells do not correspond to the pixels in the image but
to the inter-pixel positions (corners of pixels), respectively. Each cell has 4 bits,
marking whether an edge vector starts at the corresponding position, directed
up, right, down or left, respectively. Initially, the grid is cleared. After growing
the grid contains the edges. Now, starting at any edge, one can follow the edges
through the grid and clear them in the same pass. Since situations appear where
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Fig. 6. (a) The boundary of a region is composed of a sequence of edge vectors. (b)
The direction of the edge vectors depend on the direction of the spreading at which
they are detected during the growing phase.

an edge has two possible successors, it is important to apply a rule: With respect
to the current direction, always choose the most left/right turning possibility.
In this way, it is guaranteed that all chains of edges are closed. After having
extracted the edges, the connectivity grid again is cleared and ready for the
next insertion process. This approach is similar to [4], but our method occupies
less memory, since [4] employs a supergrid of size (2n + 1) × (2m + 1) and we
just use a grid of size (n + 1) × (m + 1), where n ×m is the size of the image.
The result of boundary extraction is as set of point sequences, each forming a
closed curve.

4 Homogeneity criterion

It is important to understand, that the described algorithm works with any ho-
mogeneity criterion. We will give some examples. For RoboCup, our images are
in YUV 422 format. The YUV bytes of a pixel (24 Bit) are an index into a 16
MB big lookup table. Each entry in the LUT is one byte big, and each of the 8
bits represent a color class. We refer to a pixel’s LUT-entry as its class mask.
Verifying whether the pixel supports a certain class or collection of classes is
then possible with a single AND-operation. To be robust against image noise,
we do not run our region-tracking algorithm on single pixels, but on blocks of
4× 4 pixels, in case of an image resolution of 640× 480. Then, for tracking the
green field, we define a block to belong to the green region, if the number of
”green” pixels exceed a certain threshold (12 is a typical value). We have tested
this with extremely noisy images and we can assert that it works well.
However, the choice of homogeneity criterion is free. For instance, one could
define that two blocks of pixels are homogeneous, if there texture is similar
(assuming a texture classifier). One could also define, that two pixels are homo-
geneous, when an edge detector at the respective position yields low response.
The region tracking algorithm will run with any criterion. However, it is the task



of future research, to find the best criteria, and more important, how the criteria
can be calibrated automatically and adapt to changing lighting conditions.

5 Results

The advantage of our region tracking algorithm is that only the non-overlapping
parts of corresponding regions of successive images are processed. However, if the
regions don’t overlap, the algorithm has to lunch initial searches in each frame
and degenerates. Therefore the question is, how often do the regions overlap?
Of course, the answer depends on the application. In the following, we present
results from our RoboCup application. Here, we have tracked three different
types of regions: the green playing field and the blue and yellow regions (goal and
post markings). While the robot moved through the environment, we computed
the fraction of the processed area with respect to the size of the image and the
percentage of overlapping of the tracked regions. We determined these values for
each pair of successive frames and built the respective average over a longer time
span (see table 1). We also counted the number of initial searches and repeated
the experiment for different movements (rotation/translation) and speeds of the
robot. Here, we should mention that our robots have omnidirectional wheels and
are able to rotate and translate into any direction at the same time.

Rotation processed fraction % overlapping frames initial

of the image searches

56◦/s 8.0% 80% 181 11

74◦/s 8.4% 77% 142 11

110◦/s 8.8% 71% 97 13

145◦/s 10.0% 65% 74 13

200◦/s 11.0% 60% 62 25

Translation processed fraction % overlapping frames initial

of the image searches

0m/s 6.3% 93% 138 0

0.26m/s 5.9% 89% 114 0

0.38m/s 6.8% 84% 82 2

0.52m/s 7.0% 82% 61 0

0.65m/s 7.2% 80% 48 0

0.74m/s 6.9% 81% 42 1

0.83m/s 7.9% 75% 40 0

1.0m/s 7.8% 73% 31 1

1.0m/s 7.7% 79% 24 2

Table 1. The average fraction over a sequence of frames of the processed area with
respect to the size of the image and the percentage of the overlapping area with respect
to the area of the tracked regions has been determined for different movements and
speeds. The last two columns indicate the number of frames and the number of initial
searches that had to be started.

The tracked regions overlap greatly and only a small fraction of the image
data is accessed (below 10%). As expected, the rotation is more disadvantages
then the translation. This is because objects that are far away from the robot
(as the goals) have a high speed in the image, if the robot rotates. Therefore
the regions might not overlap, and initial searches have to be executed. With a



rotational speed of 200◦/s 25 initials searches had to be done within 82 frames.
Assuming that an initial search requires accessing all the pixels in the image,
the algorithm yet performs well, compared with common methods, which access
all the pixels in each frame.

Although the theoretic running time of our tracking algorithm is evidently
faster than any algorithm that touches all the pixels in each image, the question
is whether this is also true for the practical running time, since the maintenance
of the drops, the queues and the connectivity grid might be more time consuming
than a straightforward implementation.

Therefore, we decided to compare the algorithm with the color segmentation
algorithm proposed in [5], which is believed to be the fastest color tracking
algorithm at the moment and which is applied by most teams in RoboCup.
The algorithm is based on classifying each pixel into one or more of up to 32
color classes using logical AND operations and it employs a tree-based union

find with path compression to group runs of pixels having the same color class.
We calibrated both algorithms to track green, blue and yellow regions. We did
not track the orange ball and black obstacles, because our system uses different
methods than color class tracking to recognize them. The following table gives
the absolute running times of the algorithms over 1000 frames with the robot
moving. Each image consist of 640× 480 pixels ( YUV 4:2:2 ) and we applied a
Pentium III 800 Mhz processor.

CMU Algorithm Our Algorithm

37.47 s 22.67 s

Thus, our algorithm is significantly faster. Moreover, our algorithm also extracts
the contour curves of all regions at each frame.
However, we do not claim that our algorithm performs better in all possible
cases. There might be applications where the other algorithm performs better.
This will typically be in cases, where many small and fast moving regions are to
be tracked.

6 Conclusion

We have proposed a new method that is able to efficiently track and extract the
boundaries of several homogeneous regions. The efficiency is accomplished by
not processing the entire images but concentrating on parts where regions are
expected. The algorithm exploits the fact that corresponding regions in succes-
sive images often overlap and it extends the region growing paradigm: Tracking
is accomplished by alternating shrinking and growing. We provide a homepage
for the algorithm, with source code available in C++ and demo videos1.

The algorithm is also very useful for edge extraction and tracking (also for
other features). The advantage is that feature detectors can be very selective and
that they have to be applied at a few locations only. For instance, when searching

1 http://page.inf.fu-berlin.de/ hundelsh/research/RegionTracking/index.htm



for edges, a detector which responds to edges having a predefined direction can
be used. This is possible, because the boundary contour of each region and their
corresponding normal directions are computed by our method.

We have also demonstrated the application of the algorithm in a practi-
cal problem. In our real-time vision system for RoboCup we use the algorithm
to track regions like the goals, in order to locate and recognize these objects.
However, we also use the method to detect the marking lines on the playing
field, which are matched to a predefined model for the purpose of robot self-
localization. What makes the algorithm practical is, that both, region and edge
tracking, can be accomplished in the same run.

The method also exposes a useful interface for higher level algorithms. For in-
stance, visual attention can be implemented by controlling which regions should
be tracked. Here the primary issue is that when excluding a region from tracking,
the algorithm is really faster, since less pixels are accessed in the images. Another
interface is the extracted boundary contour. Since the algorithm is based on re-
gion growing connected boundaries are guaranteed. The boundary can serve as a
base for recognition of objects and movements or as a reference into the images.
In RoboCup for instance, we track the regions of the green playing field and
the boundary helps us to find other objects on the playing field. This is because
all objects like the ball and other robots being on the playing field are next to
the green regions in the images. Therefore their boundaries can be used as a
reference into the image where to search for the objects and they can be rapidly
detected. There is another advantage of the method, concerning the interface
between vision and path planning. When using potential field methods for path
planning [12], defining the field is an expensive operation. The occupancy grid
for the tracked green field can be used as potential field. Obstacles must not be
inserted, since they are not part the green region. However, the marking lines
must be inserted to the grid to allow the robot to pass over them. When using
omnidirectional vision, there is also the advantage that the resolution of the path
planning will be high for near but rough for distant positions.

There are three open questions future work should concentrate on. The first is
related to the homogeneity criterion. In this paper we have assumed a predefined
criterion, such as certain color classes for instance. However, rigidly defining a
homogeneity criterion will result in an inflexible algorithm. How can the homo-
geneity criterion be automatically defined? This is not just a question of finding
some thresholds but also of the kind of criterion to be used (color, texture,...).
Related to the homogeneity criterion is the question of scale [13]. How many
pixels should constitute a drop? If, for instance, there was a region whose pixels
had all the same color, then the algorithm could work on single pixels and the ho-
mogeneity criterion could be based on color difference. But, if texture is present,
more than a single pixels has to serve as a unit. The last question concerns the
correspondence of regions over time. Can the fact of overlap be exploited for
correspondence definition?
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