Predicting away robot control latency

Alexander Gloye,! Mark Simon,' Anna Egorova,!

Fabian Wiesel,! Oliver Tenchio,! Michael Schreiber,!
Sven Behnke,? and Raiil Rojas!
Technical Report B-08-03

! Freie Universitit Berlin, Takustrae 9, 14195 Berlin, Germany
2 International Computer Science Institute, Berkeley, CA, 94704, USA
http://wuww.fu-fighters.de

Abstract. This paper describes a method to reduce the effects of the
system immanent delay when tracking and controlling fast moving robots
using a fixed video camera as sensor. The robots are driven by a computer
with access to the video signal. The paper explains how we cope with
system latency by predicting the movement of our robots using linear
models and neural networks. We use past positions and orientations of
the robot for the prediction, as well as the most recent commands sent.
The setting used for our experiments is the same used in the small-size
league of the RoboCup competition. We have successfully field-tested
our predictors at several RoboCup events with our F'U-Fighters team.
Our results show that path prediction can significantly improve speed
and accuracy of robotic play.

1 Introduction

The time elapsed between deciding to take an action and perceiving its conse-
quences in a given environment is called the control latency or delay. All physical
feedback control loops exhibit a certain delay, depending on the system inertia,
on the input and output speed and, of course, on the speed at which the system
processes information.

In the RoboCup small size league we use data from two video cameras fixed
above the field to determine the positions of all robots on the field. The robots
can be thought as circular, with a maximum diameter of 18 cm. The field is 2.4 by
2.8 meters long. An off-the-field computer sends commands to the robots, which
are very fast, sometimes reaching peak speeds of several meters per second.

In order to react as precisely as possible to a given situation and to calculate
the behavior of the robots we need to know their exact positions at every mo-
ment (i.e. at every video frame). However, due to the system delay, the system
can actually react to commands only after some time. When moving faster the
delay becomes very important since the error between the real position of the
robot and the position used for control may grow up to 20 cm. The last frame
captured by the cameras reflects a past position of the robot, and we need to send
commands so that they are consumed by the robot in a future frame. Predicting

the present position of the robot is therefore not enough: we need to predict
its future position, at the time when the new commands will arrive and will be
consumed.

In order to correct the immanent error associated with the system’s latency
we apply neural networks and linear models to process the positions, the orien-
tations, and the action commands sent to the robots during the last six frames.
The models predict the positions of the robots four frames after the last available
data (that is, four frames from the past into the future). These predictions are
used as a basis for control. We use real recorded pre-processed data of moving
robots to train the models and teach the system to predict their positions four
frames in advance.

The concept of motor prediction was first introduced by Helmholtz when
trying to understand how humans localize visual objects (see [6]). His suggestion
was that the brain predicted the gaze position of the eye, rather than sensing it.
In his model, the predictions are based on a copy of the motor commands acting
on the eye muscles. In effect, the gaze position of the eye is made available before
sensory signals become available.

The paper is organized as follows. The next section gives a brief description
of our system architecture. Then we explain how the delay is measured and we
present some other approaches to eliminate latency. Section 5 describes archi-
tecture and training of the linear models and neural network used as predictors.
Finally, we present some experimental results and some plans about future de-
velopment.

2 System Architecture

The small size league is the fastest physical robot league relative to field size
in the RoboCup competition. Top robot speeds exceed 2m/s and acceleration is
limited only by the traction of the wheels, so a robot may cross the entire field
in much less than two seconds. Action commands are sent via a wireless link to
the robots which contain only minimal local intelligence on a microcontroller.
Thus, the robot design in this league focuses on speed, maneuravability, and ball
handling.

Our control system is illustrated in Figure 1. The only physical sensors we use
for behavior control are two S-Video cameras.? The cameras capture a view of the
field from above and produce two output video streams, which are forwarded to
the central PC. Images are captured by frame grabbers and passed to the vision
module.

The global computer vision module processes the images, finds and tracks
the robots and the ball and produces as output the positions and orientations
of the robots, as well as the position of the ball. The vision system is described
in detail in [3].

3 There are various other sensors on the robots and in the system, but they are not
used for behavior control. For example, the shaft encoders on the robots are only
used for motion control.

Based on the information collected, the behavior control module then pro-
duces the commands for the robots: desired rotational velocity, driving speed and
direction, as well as the possible activation of the kicking device. The central PC
then sends these commands via a wireless communication link to the robots.
The hierarchical reactive behavior control system of the FU-Fighters team is
described in [2].

Each robot contains a microcontroller for omnidirectional motion control.
It receives the commands and controls the movement of the robot using PID
controllers (see [4]). Feedback about the speed of the wheels is provided by the
impulse generators in each motor.

Camera
above the field

Motion control
on robot

Vision system
on PC

Wireless
communication
PC to robot

Behaviour control
on PC

Fig. 1. The feedback control system. All stages have a different delay. But only the
overall delay is essential for the prediction.

Unfortunately, the whole system accumulates a significant delay on the way
between capturing the environment and reacting to commands. In our system,
the feedback (the result) of an action is typically perceived between 100 ms and
150 ms after the time when the last frame was captured (about four frames
delay). This causes problems when robots move fast, producing overshooting or
oscillatory movement. One possible solution is to drive slowly, but this is often
not desirable.

Our approach to solve the latency problem is to predict the position and the
orientation of the robot a few frames forward into the future and to use these
predicted values for the behavior control rather than the values from the vision
directly. We feed the last captured robot positions and orientations (relative

to the current robot position and orientation) and action commands to a feed-
forward neural network or a linear model that is trained to predict the robot
position and orientation for a point in time 132ms later. This approximately
cancels the effects of the delay and allows fast and exact movement control.

A simple example can illustrate what can be gained from predicting the
positions of the robots in future frames. Fig. 2 (the gray path) shows a robot
driving without prediction. The robot drives first to the target position with a
given speed, but because of the delay it does not stop right on it; the robot drives
further against the wall and then, with low speed, again to the target position.
This is shown also in the curve from Fig. 3 (the upper one), where the distance
function from the target remains constant (the robot drives around the target)
for a certain time.

Fig. 2. Driving a robot to a given target with (black) and without (gray) using a
prediction. The lines show the robot’s driving path from start to target.

In contrast, in Fig. 2 (the black path) the behavior of the same robot is
shown when prediction is used. The robot drives much more precisely to the
target position, without overshooting. The corresponding driving functions are
shown in Fig. 3 (lower curve).

Fig. 3. The robot’s speed functions (black) and the target distance functions (gray) are
shown for a robot driving to a given target without (upper) and with (lower) prediction.

3 Delay: Measurement, Consequences, and Approaches

As with all control systems, there is some delay between making an action de-
cision and perceiving the consequences of that action in the environment. All
stages of the loop contribute to the control delay that is also known as dead
time.

The delay sources and their impact are the following:

— Camera integration time. The CCD chip in each camera must integrate the
image. The integration time is variable, but let us assume that it is equal to
10 ms.

— Transmission to the framegrabber. Two half-images are transmitted to the
framegrabber at 30 fps, that is, it takes 33 ms until the two half-images have
been captured.

— Transmission to main memory. The framegrabber transmits the data through
the PCI bus of a PC to the main memory. At 640 by 480 color pixels,
the picture size is 1.2 MB and the PCI bus sustained data rates are about
60 MB/s. We are using two cameras to capture the field, so sending the
information to memory takes about 2.4/60 s = 40 ms.

— Computer vision. This is very fast in our system, it takes around 1 ms.
Synchronizing the two camera inputs takes 3 additional milliseconds.

— Behavior control. A decision is taken in about 1 ms (plus 5 ms for displaying
the data on the screen).

— Wireless communication. The commands are sent using the serial interface
and a wireless module. The latency of both is about 17 ms, 7 ms due to
buffering in the serial FIFO and another 10 ms for sending data to the last
one in a set of robots.

— Command interpretation. The robot has to evaluate the commands, which
are interpreted every 8 ms on the robot.

— Robot reaction. Finally the robot has to react to the commands.

Adding these sources of latency we get 10+334+40+4+64+174+8 = 118 ms.
The robot reaction to commands is not contained in this value, but can be

significant. A robot does not react immediately after a command has been sent
and interpreted. The robot has a system inertia, which is very difficult to model
analytically, since it depends on many variables. The system inertia adds up to
the hardware latency.

Measuring the delay, in order to confirm the above estimate, can seem dif-
ficult, since it would require to synchronize clocks in the robot and in the con-
trolling computer. However, we found a simple solution: In order to estimate the
system delay, we use a special behavior. We let the robot drive on a straight line
with a sinusoidal speed function. This means, the robot moves back and forth
with maximum speed in the middle of the path, changing to zero towards both
turning points. We then measure the time between sending the command to
change the direction of motion and perceiving a direction change of the robot’s
movement. We obtain two curves displaced in time: one represents the velocities
sent to the robot, the second the response of the robot. The shift between both
curves is about 120 ms (see Fig. 4).

Delay

s+ o —— Vision Data

" Motor Data

¥
¥
g
5
i
20
* £
+ +
y

10 g T

-20f +

4

30 + "

.
15 20 25 30 35 40 45 50 55
Time in Frames (1/30 sec)

Fig. 4. The broken line shows the oscillations in motor speed, the continuous line shows
the oscillations in one direction, as captured by the vision system. The motor changes
rotation direction at A, the vision detects a change in movement direction at B. There
are about four frames between A and B.

Control researchers have made many attempts to overcome the effects of de-
lays. One classical approach is known as Smith Predictor [8]. It uses a forward-
model of the plant, the controlled object, without delays to predict the con-
sequences of actions. These predictions are used in an inner control loop to
generate sequences of actions that steer the plant towards a target state. Since
this cannot account for disturbances, the plant predictions are delayed by the
estimated dead time and compared to the sensed plant state. The deviations re-

flect disturbances that are fed back into the controller via an outer loop. The fast
internal loop is functionally equivalent to an inverse-dynamic model that con-
trols a plant without feedback. The Smith Predictor can greatly improve control
performance if the plant model is correct and the delay time matches the dead
time. It has been suggested that the cerebellum operates as a Smith Predictor to
cancel the significant feedback delays in the human sensory system [7]. However,
if the delay exceeds the dead time or the process model is inaccurate, the Smith
Predictor can become unstable.

Controller

Sensed state

Action State

(a)
Target .
Action State
Controller Plant
() Predicted Predictor Sensed state Delay
state

Fig. 5. Control with dead time: (a) control is difficult if the consequences of the con-
troller actions are sensed with significant delay; (b) a predictor that is trained to output
the current state of the plant can reduce the delay of the sensed signal and simplify
control.

Ideally, one could cancel the effects of the dead time by inserting a negative
delay of matching size into the feedback loop. This situation is illustrated in
Fig. 5(b), where a predictor module approximates a negative delay. It has access
to the delayed plant state as well as to the non-delayed controller actions and
is trained to output the current plant state. The predictor contains a forward
model of the plant and provides instantaneous feedback about the consequences
of action commands to the controller. If the behavior of the plant is predictable,
this strategy can simplify controller design and improve control performance.

A simple approach to implement the predictor would be to use a Kalman
filter. This method is very effective to handle linear effects, for instance the
motion of a free rolling ball [5]. It is however inappropriate for plants that contain
significant non-linear effects, e.g. caused by the slippage of the robot wheels
or by the behavior of its motion controller. For this reason, some teams use
an Extended Kalman-Bucy Filter [9] to predict non-linear systems. But this
approach requires a good model of the plant. We propose to use linear regression
models and neural networks as predictors for the robot motion, because this
approach does not require an explicit model and can easily use robot commands

as additional input for the prediction. This allows predicting future movement
changes before any of them could be detected.

4 Linear Models

4.1 Velocity and acceleration model

Tracking mobile robots with cameras fixed above the field corresponds to the
problem of tracking a moving particle in two-dimensional space. We expect the
trajectories of the particles to be smooth, since the robots have a considerable
mass (one to two kilograms) and cannot change positions instantly. We will
denote the coordinates of the robot’s path by the time series

(m15y1)7 (-r27y2)a LR (x€7y€)a

where each point corresponds to one frame in the video stream. The time elapsed
between successive frames is constant and can be set to At = 1, where the unit
of measurement is 1/30 of a second.

A straightforward approach for the prediction of the robot’s path, is to com-
pute the velocity and acceleration of the robot with the help of the last three
frames. The velocity v, (a-direction) at the point i, y; is approximated by

Um(t) =Xt — T¢—1-
whereas the x-acceleration a, can be approximated by
az(t) = vp(t) —vp(t — 1) = (v — x4—1) — (Te—1 — Tp—2) = x4 — 2041 + T4_2.

Similar approximations hold for the coordinate y. Now, x;y1 can be predicted
as

Tip1 = T + () + ag(t) = x(t) + (2 — z4—1) + (21 — 2041 + T4—2).
and symplifying this we obtain
Ti41 = 3.’[](t) — 3$t71 + Ti_o.

This is a linear model for x; based on the last three points. Most Kalman filters
used for tracking moving particles are based on an empirical model of this form.
The quality of the prediction is highly dependent on the quality of the estimated
values of the velocity and acceleration.

It is then easy to see that we can obtain a better prediction using a general
linear model in which x4;1 and ;41 are of the form

Ti41 = ATt + G1T¢—1 + -+ - AmTt—m

and
Yir1 = boTs + b1ys—1 + - - bnYi—m.

If there are correlations between the velocities in the x and y directions, we can
even postulate a model of the form

Tip1 = Q0T+ A1T—1 + AT + QQYE + A Y—1 + A Yi—m
and
Yer1 = boxy + iz 1 + b 4 boyr + 01yi—1 + b Yi—m.

This may seem strange, but in the case of robots which have three wheels, the
velocities in the x and y directions are correlated. In the model above, we are
using the last m 4 1 positions of the robot to compute the position in the next
frame. Therefore, we are using a moving window over the data of size m + 1.

The model above is more general than the velocity and acceleration model,
which it contains as a special case. Since it is a linear model, it can be solved
with linear algebraic methods.

For a given time series of points in a path, let X denote the matrix

o 1 .- Tm Yo Y1 --- Ym

1 T2 - Tm+1Y1 Y2 ... Ym+1
X:

Ti Tit1 -+ Tidm Yi Yi+1 -+ Ym

of size (n — m) x (2m + 2), where n is the number of data points we have
in a trajectory that has been captured previously. Let x denote the vector
(Tomtl, Tma2s - Titmats---) ., which are the positions to be predicted for every
prediction window. What we are looking for is a vector « such that

Xa==x

In the general case, there is no solution to this linear system of equations, but
we can look for the vector o that minimizes the total quadratic error

E=Xa-2)"(Xa-z).

It is well-known that the general solution to the type of linear problem specified
above is
a=(XTX)xTg.

The same for the second coordinate
B=(XTX)XxTy,

where y is the vector of targeted y-coordinates for the predictor.

10
5 Predictor Design

Since we have no precise physical model of the robot, we train linear models and
a three layer feed-forward network to predict the robot motion.

The input data includes the vision data from the last six frames for the
orientation and position of the robot, as well as the last few commands sent
to it. Some preprocessing is needed in order to obtain good training results.
Since we would like to simplify the problem as much as possible, we assume
translational and rotational invariance. This means that the robot’s reaction to
motion commands does not depend on its position on the field. Hence, we can
encode its perceived state history in a robot-centered coordinate system.

The position data consists of six vectors — the difference vectors between the
current frame and the other six frames in the past, given as (z,y)-coordinates.
The orientation data consists of six angles, given as difference of the robot’s
orientation between the current frame and the other six ones in the past. They
are specified as their sine and cosine. This is important because of the required
continuity and smoothness of the data. If we would encode the angle with a
single number, a discontinuity between —m and 7 would complicate training. The
action commands are given in a robot-centered coordinate system. They consist
of the driving direction and speed as well as the rotational velocity. The driving
direction and velocity are given as one vector with (x, y)-coordinates, normalized
by the velocity. They are given in the robot’s local coordinate system.

Preprocessing produces seven float values per frame, which leads to a total
of 7% 6 = 42 input values for the models.

The target vector we are using for training and testing the network consists
of two components: the difference vector between the current position and the
position four frames forward into the future and the difference between the
current orientation and the orientation four frames ahead. They are given in the
same format as the input data, without the robot commands.

The linear model consists therefore of 42 constants that have to be computed.
We train a different linear model for the x coordinate and for the y coordinate.
Remember that the data is given in the robot’s reference frame — there is an
asymmetry between the x and the y direction. In one direction the robot uses
two wheels, in the other, three. The robot dynamics is different in each direction
and therefore a different linear model is necessary.

Denoting the past positions of the robots in the robot reference frame by
(x—6,Y—6), .-, (¥-1,y—1), the last orientations by (cos_g, sin_g), ..., (cos_1, sin_1),
and the last commands by (vz_g,vy_g,0—_¢),-- ., (vr_1,vy_1,0_1), the two lin-
ear models that we train have the form

zs =0 Yg = UT,B

where v is the input vector with the 42 parameters specified above and « and (8
are 42-dimensional vectors of linear weights.

On the other side, the neural network consists of 42 input units, 10 hidden
units, and 4 output units. The hidden units have a sigmoidal transfer function

11

while the transfer function of the output units is linear. We train the network
with recorded data using the standard backpropagation algorithm [1]. Fig. 6
shows the general architecture of the network used.

k hidden units

input sites output units

site n+1

connection matrix connection matrix
W, W,

Fig. 6. Architecture of the multilayer neural network used for this report

A great advantage of the linear models and the neural network is that they
can be easily trained again if something in the system changes, for example if
a PID controller in the robot’s electronics is modified. In this case, new data
must be recorded. However, if the delay itself changes we only have to adjust
the selection of the target data (see below) before retraining.

5.1 Data Collection and Constraints

Data for training the network is generated by moving a robot along the field.
This can be done by manual control using a joystick or a mouse pointer, or by
behaviors developed for this purpose. It is convenient to have a simple behavior
that explores the space of possible directions and speeds, in order to generate
enough training data.

To cover all regions of the input space, the robot must face all situations that
could happen during game play. They include changing speed in a wide range
of situations, rotating and stopping rapidly, and standing still. We also must
make sure that the robot drives without collisions, e.g. by avoiding walls. This
is necessary because the models have no information about obstacles and hence
cannot be trained to handle them. If we would include such cases in the training
set, the predictors would be confused by conflicting targets for the same input.
For example driving freely along the field or driving against a wall produce the
same input data with completely different target data.

12

We could solve this problem by mapping back to a global coordinate system
and including additional input features, e.g. a sensor for obstacles, and thus
handle also this situation, but this would complicate the predictor design and
would require more training data to estimate additional parameters.

6 Prediction results

We have extensively tested both neural and linear predictors for position and
orientation of the robots since its first integration into the FU-Fighters’ system.
The predictors perform very well and we have nearly eliminated the influence of
the delay on the system.

6.1 Position Prediction

As one can see from Fig. 7 the two curves are nearly the same, just slightly
shifted in the time. The black curve describes the prediction of the position of
the robot, calculated by the neural network. The gray one displays the position
of the same robot seen by the vision at that time and transferred to the system
with delay. The middle line is the center of the field. The neural network predicts
correctly the position of the robot seen by the vision 4 frames later. The vision
displays, however, a smoother curve than the predictor. This results from the fast
change of movement direction and decreases with proper and extensive training
of the neural network.

Fig. 7. Robot position from the vision (gray curve) and the predicted position from a
neural network (black curve).

13

6.2 Orientation Prediction

Fig. 8 represents results from the orientation prediction via the neural network.
The black curve is again the calculated orientation of the robot 4 frames forward
in the future and the gray curve the actual orientation given by the vision. As one
can see, the actual orientation curve is much more smoother than the predicted
one. This is an effect from the very fast movement of the robot around its axis
and the very fast change of direction and is much greater than by the position
prediction.

Fig. 8. Robot orientation from the vision (gray curve) and the predicted orientation
(black curve).

Figure 9 shows the result of training the linear model and predicting four
frames after the last captured frame. The thin lines extending the path are the
result of predicting the next four frames at each point. The orientation of the
robot is shown with a small line segment, and the desired velocity vector for the
robot is shown with another small segment. At sharp curves, the desired velocity
vector is almost perpendicular to the trajectory. As can be seen, the predictions
are very good for the linear model.

Figure 10 shows the same information, but magnified, in order to make it
more visible.

To demonstrate the effect of the prediction on robot behavior, we have tested
one particular behavior of the robot — drive in a loop around the free kick points
— with linear and neural network prediction. The histograms in Fig. 11 compare
three kinds of predictors: a neural network, a linear regression model, and a
physical model (which approximates velocity). As can be seen, for the robot
orientation, the neural networks has much more samples with smaller errors
than a simple linear prediction with two frames (which essentially computes

14

Local Prediction four Frames in Advance

60 -

40

20

Blue: predicted trajectory (up to four frames into the Tartt#é
-80 Red: desired velocity command
S Green: Robot orientation

~100 | | | | | | | | |]
-100 -80 -60 -40 -20 0 20 40 60 80 100

cm

Fig.9. A trajectory showing the predictions for four frames (thin lines) after each
data point. The orientation of the robot is shown in green, and the desired velocity
(the command sent) in red.

the current velocity), and is also better than the linear regression. The linear
regression is slightly better for the position prediction than the neural network,
and much better than the simple velocity model.

The average position error for the simple linear prediction is 3.48 cm, it is
2.65 cm for the neural network, and 2.13 cm for the linear regression. The aver-
age orientation error is 0.17 rad (9.76 degrees) for the simple linear prediction,
0.113 rad (6.47 degrees) for the linear regression and 0.08 rad (4.58 degrees)
for the neural network. When independent predictors are combined to provide a
weighted estimate, the prediction errors can partially cancel in some situations.
The best predictor is therefore an average of the linear regressor with the neural
network. In our system we can pick the prediction method from a menu for each
robot type.

15

Local Prediction four Frames in Advance

95 -
Blue: predicted trajectory (up to four frames into the future)
Red: desired velocity command

90} Green: Robot orientation

85

80

65

60 -

55

-100 -95 -90 -85 -80 =75 -70 -65 -60 -55 -50
cm

Fig.10. A zoom of the predictions, orientation and desired velocity.

7 Improving the predictors

A linear predictor with the same number of input variables as the neural net-
work is competitive with it. We then tested a straightforward improvement for
the linear predictor, which is also used for time series analysis with ARIMA
models (autoregressive, moving average models). A linear predictor was trained
to minimize the prediction error for the fourth frame after the last data, using
a window of length five (the last five frames were used for the prediction). After
four frames, the error between predicted position and actual position becomes
available and can be used as a parameter for a new prediction. We used the z-
direction and y-direction quadratic error for the last three points together with
the window of five points and commands used for the prediction. The rationale
behind this choice, is that the linear predictor can “sense” when the prediction
is far-off and can compensate the error. This happens mostly when the robots
makes sharp turns. The effect of considering the prediction error is equivalent
to an artificial enlargement of the prediction window, without increasing exces-
sively the number of parameters. When the last frame that arrived is frame i,
we are predicting frame i + 4. For the prediction we use the frames i — 4 to

16

Prediction Error of Robot Position Prediction Error of Robot Orientation
400 800
— Linear Regression Linear Regression
— - Neural Network ural Network

Velocity Model i Velocity Model
700

350

©
8
8

Number of samples over the error
5
8

Number of samples over the error

R] . . . ,
15 [0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9
Angle error between predicted and real robot orientations [rad]

5 10
Distance error between predicted and real robot positions [cm]

Fig. 11. Comparison between the histograms of linear and neural network predicted
robot position (left) and orientation (right) error. Both histograms have about 3000
samples.

¢ and the prediction errors at i — 2 to i. The prediction error for frame i — 2
contains information from the frames ¢ — 6 to ¢ — 10. Therefore, we are using this
information but in a condensed form, that does not make the number of free
parameters explode.

Histogram of errors of a cascaded linear associator
900 T T T T T

3
Mean quadratic error (cm)

Fig. 12. The histogram of errors of a cascaded linear associator

A linear predictor with a mean squared error of 1.32 cm could be improved in
this manner to a mean squared error of 1.23 c¢m for a certain data set (Fig. 12).
This means that the method works, but since the accuracy gain is only marginal,
we decided not to include this type of cascaded predictor in our control system.
Much more promising seems to be to combine the output of a linear predictor

17

with the output of a neural network, in order to increase the accuracy of the
prediction. In the case of predictors with uncorrelated errors, such an approach
should decrease the total mean error by a factor V2.

8 Measuring the vision noise

One important problem when tracking a robot using a video camera is finding
out the magnitude of the noise introduced by the vision system. In the RoboCup
environment, the absolute position error is not as important as the relative
error. The absolute position of the robot is computed using a mapping from the
image pixels to field coordinates. If there is a systematic error, and all absolute
coordinates are shifted by a few millimeters, usually this will not impact the way
the robots play, since the robots move relative to the other robots and the ball.
We try hard to get a good map to absolute field positions, but the vision noise
is for our purposes the more relevant problem.

We are able to measure the noise in the robot’s coordinates by making the
assumption that the real robot follows a smooth path: the difference between
such a smooth path and the robot coordinates should be the vision noise.

To compute a smooth approximation to every point in the robot trajectory,
we take three points before and three after the current point (in field coor-
dinates). Using them, we train a linear model that predicts the position of the
current point (both for the 2 and y coordinates). The average difference between
the predicted (smoothed) position and the real position is the vision noise.

Using this approach we could determine that the noise introduced by our
vision system is 3 mm. This means that the real position of the robot has a
normal circular distribution with standard deviation of 3 mm (which corresponds
to 2.1 mm noise in the z-direction and 2.1 mm noise in the y-direction), a
surprisingly accurate value, considering that the robots are moving fast in the
large field.

We tested this assumption, that the noise in the signal can be estimated by
predicting intermediate frames, by generating the artificial path shown in Fig.13.
We then added Gaussian noise to the path and tried to estimate the noise using
a linear regression. The result was that we could estimate the noise correctly,
up to a factor 1.2 when using three points before a frame and three points after
a frame, to determine the position of the moving point in the selected frame.
Therefore, our method overestimates the noise by 20 percent. In the case of our
moving robots this means that 3mm is an upper bound on the real vision noise.

We then made another experiment: a linear model trained previously to pre-
dict the fourth frame was used with the original data. Let us call the data the
vector z1, 29, ..., zm and the coeficients of the linear model ay, as, ..., a,,. Then
the output of the linear model is

z=a121 +a2z20 4+ -+ amzm

We added normal distributed noise to the x and y coordinates, each with stan-
dard deviation of 2.1 mm and recomputed the output. The difference between

18

Fig. 13. An artificially generated path, with noise added.

the new result 2’ and a noisy version of z (that is z plus Gaussian noise) gives
us an estimate of the error rate of the best possible predictor. The average de-
viation we obtained was 3.8 mm. This means that our linear predictors (with
errors below 1.5 cm) are actually very accurate and very near to the minimum
possible prediction error. No predictor can predict the position of a robot in the
fourth frame with less than 3.8 mm error, because the vision noise prohibits it.

Recomputing the noise added to the signal
T T T

Estimated noise

02f

0.1 0.2 03 0.4 05 06 0.7 08 0.9 1
Added noise

Fig. 14. Estimated noise using linear regression versus real noise (using four points
before, and four points after a given point)

9 Effect of using commands for the prediction

Another interesting experiment consisted in testing how much of the quality of
the predictor comes from the dynamics of the robot itself and how much from the

19

knowledge of future commands. We trained a simple linear model and another
one, which only used the position and orientation of the robots.

A linear predictor which was given access to the last six commands for a
particular trajectory and a particular training set, had an error of 1.32 cm. The
predictor which was blind to the previous commands to the robot had an error
of 2.43 cm. This means that the knowledge of the previous commands helps to
lower the prediction error by almost 1.1 cm, which is 45 percent, i.e. almost half,
of the original error.

10 Conclusion and Future Work

We have successfully developed, implemented, and tested linear models and a
small neural network for predicting the motion of our robots. The prediction
compensates for system delay and thus allows more precise motion control, ball
handling, and obstacle avoidance. To make the perception of the world consis-
tent, prediction is not only used for our own robots, but also for the robots of
the opponent team and the ball. However, here the action commands are not
known and hence simpler predictors are used.

For advanced play, it would be beneficial to anticipate the actions of opponent
robots, but this would require learning during a game. Such online learning is
dangerous though, because it is hard to automatically filter out artifacts from
the training data, caused e.g., by collisions or dead robots.

Another possible line of research would be to apply predictions not only to
basic robot motion, but also to higher levels of our control hierarchy, where
delays are even longer.

Finally, one could also integrate the neural predictor into a simulator as a
replacement for a physical model. A simulator allows quick assessment of the
consequences of actions without interacting with the external world.

If there are multiple action options during a game, this 'mental simulation’
could be used to decide which action to take.

Another interesting application could be to use the average prediction error
over time as an early predictor of possible robot malfunction or hardware prob-
lems. This would give an opportunity to change a robot before it stops working
in the middle of a game.

References

1. Rojas, Rail: Neural Networks — A Systematic Introduction. Springer Verlag, Hei-
delberg, 1996.

2. Behnke, Sven; Frotschl, Bernhard; Rojas, Rail; Ackers, Peter; Lindstrot, Wolf; de
Melo, Manuel; Schebesch, Andreas; Simon, Mark; Spengel, Martin; Tenchio, Oliver:
Using Hierarchical Dynamical Systems to Control Reactive Behavior. Lecture Notes
in Artificial Intelligence 1856 (2000) 186-195.

3. Simon, Mark; Behnke, Sven; Rojas, Ratl: Robust Real Time Color Tracking. Lecture
Notes in Artificial Intelligence 2019 (2001) 239-248.

20

. Rojas, Ratl; Behnke, Sven; Liers, Achim; Knipping, Lars: FU-Fighters 2001 (Global

Vision). Lecture Notes in Artificial Intelligence 2377 (2002) 571-574.

Veloso, Manuela; Bowling, Michael; Achim, Sorin; Han, Kwun; Stone, Peter: CMU-
nited98: RoboCup98 SmallRobot World Champion Team. RoboCup-98: Robot Soc-
cer World Cup II, pp. 61-76, Springer, 1999.

Wolpert, Daniel M.; Flanagan, J. Randall: Motor Prediction. Current Biology Mag-
azine, vol. 11, no. 18.

Miall, R.C.; Weir, D.J.; Wolpert, D.M.; Stein, J.F.: Is the Cerebellum a Smith
Predictor? Journal of Motor Behavior, vol. 25, no. 3, pp. 203-216, 1993.

Smith, O.J.M.: A controller to overcome dead-time. Instrument Society of America
Journal, vol. 6, no. 2, pp. 28-33, 1959.

Browning, B.; Bowling, M.; Veloso, M.M.: Improbability Filtering for Rejecting
False Positives. Proceedings of ICRA-02, the 2002 IEEE International Conference
on Robotics and Automation, 2002.

