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Summary

This thesis presents a method for automatic on-line color calibration of
soccer-playing robots. It was developed to automate the color calibration
process of the FU-Fighters Mid-Size robots, which play in the RoboCup
Middle-Size League. Although the method was implemented on soccer-
playing robots, it could also be used in other applications where colors need
to be mapped to symbolic colors (calibrated).

The method requires geometrical models of the objects whose colors
are to be calibrated. In the implementation presented here, a model of
the field-lines in world coordinates, and one of the ball in image coordinates
was used. This made calibration of 4 distinct symbolic colors possible: Field
(green), ball (orange), yellow goal (yellow) and blue goal (blue). The method
accomplishes this without making any specific assumption about the color of
the field, ball, or goals except that they are of roughly homogeneous distinct
colors, and that the field-lines are bright relative to the field. The calibration
works by localizing the robot(without using color information), then growing
homogeneously colored regions and matching their size and shape with those
of the expected regions. If a region matches the expected one, its color is
added to the respective symbolic color class. This method can be run in a
background thread thus enabling the robot to quickly recalibrate in response
to changes in illumination.

The method was tested in a real-world scenario during the RoboCup
World Championship in Osaka 2005, where it was used extensively by the
FU-Fighters Mid-Size team which attained the second place.
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Chapter 1

Introduction

This work describes a method for automatic on-line color calibration used
by the soccer-playing robots of the FU-Fighters Mid-Size team. The robots
compete in the RoboCup Middle-Size League, and are equipped with an
omni-directional vision system and use conventional sub-notebooks for pro-
cessing (see [4] and Fig.1.1 ).

A short introduction to the RoboCup domain follows. After that the
importance of color calibration is discussed as well as the advantages of
automating such a calibration. Next, the automatic calibration method is
described step-by-step and finally, experimental results are presented.

1.1 The RoboCup Initiative

Robotic soccer provides a highly dynamic environment where one of the
main challenges is simply finding out what is going on on the field. It is
different from other “standard-problems” of artificial intelligence where an
agent often has complete knowledge over a mostly static world.

The RoboCup Federation (www.robocup.org) was founded in 1997 as
an international organization consisting of around 150 universities and re-
search institutes. The purpose of RoboCup is to proliferate research by
using soccer-playing robots as a benchmark for new algorithms and meth-
ods developed in artificial intelligence and robotics.

Computers have been competing with man since the early days of their
creation. Traditionally the competitions were biased in favor of the comput-
ers and the tests emphasized areas like number crunching (e.g. multiplying
large numbers together) or searching for the best action in a static, com-
pletely known world (e.g. chess). The drawback of these problem is that
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Figure 1.1: FU-Fighters Mid-Size Robots used in the RoboCup World
Championship in Osaka 2005.

they do not promote skills which robots vitally lack in order to deal with
everyday situations. Simply exploring a busy office-building without bump-
ing into something or someone is an example of a task where computers
are largely inferior to humans. In fact, one can say that as the environ-
ment becomes more dynamic, the harder it is for a computer to master the
situation.

For these reasons soccer was proposed as the next computer-human com-
petition, and the RoboCup Federation has set itself the ultimate goal of win-
ning the human world champion of soccer by the year 2050(!). Since this goal
is very ambitious and not achievable in the near future, the RoboCup com-
munity currently concentrates on solving many of the subproblems needed
to realize this dream.

Playing soccer is a very challenging task for a robot because it presents
a highly dynamic environment with many objects moving at high speeds
(players, ball). It is actually so challenging that several simplifications are
made to the game environment in RoboCup in order for the robots to be able
to perform something which can be considered to be a game of soccer. These
simplifications include limiting the competition to indoor environments with
constant lighting, as well as strictly color-coding the field and the robots.
The field is also a lot smaller than a normal soccer field. Furthermore,
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the robots only compete internally since they are still perform abominable
compared with any human player.

It is the intention of the RoboCup Federation to abandon these simpli-
fications gradually and bring the game closer to an official outdoor game of
soccer. In the process one hopes to solve problems common to many modern
and future robotic tasks. This way, progress made in robotic soccer should
expedite advance in other areas of robotics and AI.

A problem common to RoboCup as well as other areas of robotics is the
problem of dynamic lighting and the mapping of color values to symbolic
colors. This problem is the theme of this thesis. Other problems in RoboCup
include multi-agent collaboration, strategy acquisition, real-time reasoning,
and sensor-fusion to name a few.

An advantage of robotic soccer which is worth mentioning is that most
people understand what the game is about (get the ball into the opponents
goal!), which makes it easier for non-experts to get an idea about how fast
(or slow) progress in AI and robotics is.

Teams in RoboCup compete in several different leagues allowing re-
searchers to focus on different sub-problems of robotic soccer, from straight-
forward sensing and acting, to high-level inter-robot cooperation and plan-
ing. At the RoboCup World Championship held each year, teams compete
in 5 different leagues:

• Small-Size League: Size up-to 18cm diameter, 5 robots in each team on
a field of approx. 3x4m. The robots (which carry color-markers) and
an orange golf-ball are tracked by fixed overhead camera(s) connected
to an off-board computer. The computer processes all information and
radios commands to each robot in the team.

• Mid-Size League: Size approx. 50-60cm diameter, 4-6 robots in each
team on a field of approx. 8x12m. The robots do most processing
on-board with their own camera and other sensors.

• Humanoid League: Robots in humanoid form of various sizes, perform-
ing challenges such as penalty-shooting and, recently, play 2 against
2. Processing is done on-board.

• 4-Legged League: Teams of 4 sony-aibo robot dogs play against each
other. Processing is done on-board.

• Simulation League: Teams of 11 simulated software agents play against
each other in a virtual world.
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Figure 1.2: Many different robots compete in several leagues at the RoboCup
World Championship held each year (source: [11], [12] and [13]).

1.2 The Importance of Color Calibration

One of the most challenging subproblem in RoboCup is a real-time vision
system delivering information about the state of the game comparable to
that available to a human player. Today, most such vision systems rely on
color calibration, and their performance is directly affected by the quality
of the calibration. Color calibration is the process of mapping color values
(e.g. RGB or YUV values) to symbolic colors (orange, green, yellow, etc.).
It enables the vision system to “look-up” the symbolic color of a pixel when
processing the image. This, for example, makes it possible to quickly find
the ball by simply looking for an orange blob in the image.

In the RoboCup Mid-Size League most teams go through tedious cal-
ibration procedures to obtain as accurate color calibration as possible. A
typical approach is to manually define which parts of the color space corre-
spond to a color class using some kind of a GUI tool. This involves capturing
images from different positions on the field, defining the color-boundaries be-
tween color classes, or classifying individual color pixels into one of the color
classes. This method is error-prone and time consuming. Furthermore, a
classification obtained at one point can fail at another, if the lighting condi-
tions are different. For this reason, all objects in the RoboCup-environment
are strictly color-coded and the organizers try to provide lighting that is as
steady, bright and uniform as possible.
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Figure 1.3: 3D color visualization of the colors appearing in the image seen
in figure 3.3, captured from a Mid-Size robot’s camera. Image obtained with
”ColorSpace” ( www.couleur.org)
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Figure 1.4: The manual color calibration tool of the FU-Fighters system.
The operator clicks a point in the image where a color growing should be
started with a manually chosen threshold. The pixels are compared to the
starting point and added to the region until they exceed the given threshold.
The operator then adds the region to the corresponding color class or chooses
another region.

The method presented here remedies the problem by automatically clas-
sifying regions of homogeneous color into the following four color classes:
field, ball, yellow goal, and blue goal. Regions that do not fit the criteria
of any of the classes are not classified and can be considered obstacles. The
white field-lines are detected without the use of color information, and can
be identified as non-obstacles. The output of the method is essentially a
separate list of color values for each color class. These lists grow over time,
as more and more colors are classified. In the FU-Fighters system, these
lists are stored as a look-up table using the full 24-bit YUV color depth.

The method can run on-line during a game to compensate for changes
in lighting, and is able to calibrate a whole image from scratch and error-
free in 1-2 seconds. It is robust against false classification even with robots,
humans and other objects cluttering the field.

The calibration method previously used in the FU-Fighters system was
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completely manual. The operator would get an image over the network
from the robots camera using a debug tool running on a remote server (see
Fig1.4). With it he would repeatedly choose a color region with a manually
tuned threshold and add those regions’ colors to the corresponding color
class. Since light varies depending on where the robot is standing on the
field, the operator needs to drive the robot to numerous different positions
and calibrate colors at each one of them. In figures 1.5 and 1.6 the process
is illustrated for one position.

Calibrating a robot in this manner could take up to 15 minutes. Since
the robots cameras are all slightly different it is not possible to transfer the
color look-up table of a calibrated robot to an uncalibrated one, therefore
making individual calibration of each robot necessary.

Manual color calibration is one of the main contributor towards long
setup times in RoboCup. Reducing setup time is a major concern for most
teams since they are often required to play many games with short intervals
at different fields. Furthermore, long setup times make any robot less useful
or even completely useless, regardless the task.
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Figure 1.5: The manual calibration process. Here the field is being cal-
ibrated. As the operator repeatedly adds colors to the color classes the
segmented image improves. Left: Image with a manually grown region.
Right: Segmented image after the colors in this and previous regions were
added to the corresponding color classes.



CHAPTER 1. INTRODUCTION 11

Figure 1.6: Continuation of figure 1.5. Here the yellow goal and the ball are
being calibrated. The bottom right image is the final results after adding
numerous other regions to the color classes.
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Related Work

Most of the work done on color calibration in RoboCup has been focused
on assigning every point in the color-space to a specific symbolic color. The
method presented in this work falls in this category, and the next section
reviews some of these methods. Thereafter, other approaches that rely more
on relative color differences than on accurate calibration are reviewed. Fi-
nally, color constancy methods are discussed.

2.1 Automatic Calibration For Look-Up Table Sys-

tems

Most vision-systems in RoboCup rely on color-labels to quickly segment an
image and detect objects of interest (ball, opponents, field-lines, goal, etc.).
They require a table which allows a look-up of the symbolic color (green,
orange, yellow, etc.) of any color value in a particular color-space (RGB,
YUV, etc.). Therefore, a lot of work has been aimed at filling these look-up
tables automatically.

Related work includes [5], which presents a method for off-line, semi-
autonomous color-calibration, implemented in the Mid-Size League. Retinex
is used for improving color constancy, and k-means clustering is used for the
adaptation of color classes. HSV thresholds are found from the clusters that
determine each color class, which area then manually mapped to symbolic
colors. This method analyzes the vicinity of colors in the color-space and
then forms clusters that represent color-classes. In contrast, the method pre-
sented here relies on the expected geometrical shape of the objects belonging
to a color-class and does not rely on color-space analysis. Furthermore, it is
fully automatic, not requiring manual mapping to symbolic colors.
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A method called KADC (Knowledge-based Autonomous Dynamic Colour
Calibration) is presented in [9]. KADC is a method for autonomous on-line
color classification, implemented in the Sony Legged League. KADC also
utilizes the geometric information of the field to define color classes, and
then updates them with the help of a color cluster similarity metric called
EMD. The method presented here is also based on geometric knowledge of
the field, but this is combined with the color-less detection of the robot’s
position. Then the classification is updated using only geometric criteria
without having to incorporate any color similarity metrics to previously es-
tablished classification. This enables handling of abrupt increase/decrease in
illumination, which is reported to be troublesome when applying KADC(by
[9]). What further differentiates the method presented here from [9] is that
the ball color class is also handled.

2.2 Other Approaches

Some vision-systems in RoboCup utilize either relative differences between
color-areas solemnly, or in combination with a rough color calibration. In
these systems the calibration is integrated into the object-detection step or
no calibration is required.

In [15], Hanek et al. propose a method for detecting the ball without
the use of color labeling. It is further extended by the same author [16]
to run in real-time. The method is based on using local image statistics
and fitting a model of the desired object to the image data. A model of
the ball is initialized with some values for position and radius, and then
iteratively corrected by estimating to which side the pixels near the edge
of the model belong. Although the test cases are quite impressive, there is
always a strong overlap between the initial position of the model and the
final corrected one. It is also interesting to know how fast the method finds
the ball from scratch, especially if it is not big in the camera’s image. Under
these circumstances, color-labeled methods have a big advantage because
of the regulated orange colored-ball. Nonetheless, these kinds of methods
will probably become more important if RoboCup decides to drop the color-
coded ball.

In [6], Juengel et al. present an efficient object detection system (also
implemented in the Sony Legged League) which only requires a linear divi-
sion of the UV-color space. This system is extended in [7] to obtain a more
fine-grained classification. The division is calibrated automatically, and the
objects are heuristically detected. However, such a linear division and the
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use of heuristics may be inadequate for more demanding situations, for ex-
ample when color classes are not linearly separable, or when numerous color
classes are required.

2.3 Color Constancy Methods

Another area of research important for this discussion are color constancy
algorithms. If a scene under standard illumination is given, the same scene
will experience a shift of color-values in color-space when subjected to a
different unknown illumination. The purpose of color-constancy methods
in computer vision is to solve this problem by converting every color-space
value (e.g. RGB) to what it would be under the standard illumination.
Thus, color constancy methods can make vision-systems in RoboCup robust
against illumination changes, but the color calibration still has to be made
for the standard illumination (manually or automatically). Since the color
of objects in RoboCup varies from one competition site to the other, manual
calibration is still very inconvenient. Therefore, there has been more interest
in auto-calibrating methods in RoboCup.

At least two approaches to color constancy have been used in RoboCup;
an implementation of the Retinex algorithm (mentioned earlier, see [5]) and
an algorithm using self-organizing feature maps (see [10]). Retinex is a
biologically-inspired algorithm which was first proposed by [19]. Retinex
algorithms are based on calculating the so called lightness of a pixel. Light-
ness, in Retinex theory, is a relative measurement of a pixel’s brightness,
measured in each of it’s color channels separately. It is calculated by taking
the average of a pixel’s intensity ratio to many other pixels in the image.
The usual approach is to choose a number of short paths and compare the
pixels on a path to the path’s first pixel. At each pixel the ratio is recorded,
and it’s lightness is obtained by averaging these ratios.

Retinex algorithms seem to be too slow for on-line processing, although
real-time implementations exist with the use of specialized hardware (see
[18]).

Austermeier et al. ([10]) find the color-correspondence between two il-
lumination settings by using self-organizing feature maps (SOM) in color-
space. Two SOMs are built, one for the cloud of color points under the
initial reference illumination and another one for the new illumination set-
tings. The distance between corresponding grid locations in the two maps
is then used as a correction vector for the set of color points belonging to
that volume element. Unfortunately, the method is very computationally
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expensive.
Another class of color constancy methods, used in many consumer cam-

eras, are based on the ”gray-world assumption” of G. Buchsbaum[14] and
referred to as gray world methods. They are based on the assumption that
the average of the surface reflection of a typical scene is gray (or some other
constant color). This method can be implemented fast, but has undesired
effects in a RoboCup scenario. For example when a large dark object is
present in the image such as the blue goal or a robot, the algorithm will
change all colors in the image. This can result in the green field or the
orange ball to have colors others than previously defined, therefore causing
a problem in the object-detection algorithms.

An alternative to gray world methods is to place a colored or white patch
on your robot which is visible in the camera’s image at a fixed position. The
image is then corrected globally until the image area occupied by the patch
has reached it’s target value. This method, in contrast to gray world meth-
ods, is not affected by large dark or bright objects in the image. However,
non-uniform lighting such as when a shadow or a bright light falls on the
patch, will bias the image globally. An implementation of this method was
used in the FU-Fighters Mid-Size team, where a piece of white paper was at-
tached around the camera’s lens. White-balance was achieved by adjusting
the camera’s parameters with the help of two PID-controllers (see [17]).

Instead of placing a white patch on the robot, one could drill a hole
in the middle of the omni-directional mirror and use the incoming light to
adjust the camera. Since only the robot can be seen in the mirror’s center
and is not an object of interest for the vision-system, this would not be a
loss of an important image region.



Chapter 3

Automatic Color Calibration

3.1 Overview

The method presented here automatically classifies regions of homogeneous
color into the following four color classes: field, ball, yellow goal, and blue
goal. It essentially works by mimicking what the operator does when cali-
brating manually. After acquiring an image from the robots camera, a color
region is grown and its colors assigned to the corresponding color class. In
order to find the right color class, available geometric information about the
field and ball is utilized, as well as the robot’s localization. Thus, a grown
color region must have a shape which fits the geometrical criteria of one of
the color classes. Regions that do not fit the criteria of any of the classes
are not classified and can be considered obstacles.

For each color class the method consists of the following steps:

• localize the robot on the field using edge detection (see chapter 3.2).

• loop:

- Grow a homogeneous color region (see chapter 3.3).

- Compare the grown region’s size and shape to the size and shape
of the corresponding expected region (see chapter 3.4).

- if the grown region is within the boundaries of the expected re-
gion, and fills more than a certain percentage of the expected
size:

add all the colors in the grown region to the corresponding
color class.

16
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- else

add no colors to the color class.

The quality of the calibration improves as more and more iterations of
this loop are executed. Good calibration is usually obtained after 1-2 sec-
onds as illustrated in the results chapter (see chapter 4). The homogeneity
thresholds for the color growing are computed automatically (see chapter
3.5).

3.2 Color-Less Localization

In order to allow image coordinates to be transformed into world coordinates,
the robot needs to localize itself in an initialization step. This is done by
using a region tracker (described in [2]), which stops growing a region when
a possible field-line is encountered. The stopping criterion is based on the
assumption that a field-line is bright compared to the neighboring points.
In the FU-Fighters implementation 4 pixels are used, to the left, right,
above and below the actual point p, which have a pixel distance from it
corresponding to the expected field-line width (see Fig. 3.1). A field-line is
considered to be found if p is one standard deviation σ brighter than at least
two of its neighbors, where σ is the standard deviation of the brightness of
those pixels in the image which correspond to points on the field. The value
of σ is calculated on-line by sampling a certain number of random pixels in
the image.

Subsequent processing requires extraction of the pixels that coincide
with the points of the white field-lines. To accomplish this, a search is
performed for dark-white-dark transitions on short scan-lines perpendicular
to the edges of each of the tracked regions. This is done in the following
manner: find the brightest point p on the scan-line. Inspect the endpoints
s and e of an extended scan-line centered on p and having length twice the
expected field-line width (the length was tuned experimentally, the idea is
that s and e do not lie on the field-line, see Fig. 3.1). If p is σ-brighter than
s and e, declare it a white pixel corresponding to a point on a field-line.

The set of points obtained in this way is the input for a special localiza-
tion algorithm. The localization exploits the presence of certain features in
the field’s line-model (center circle, corners, etc. see Fig. 3.2) and localizes
the robot using them and a force field matrix (Hundelshausen et al. de-
scribe this localization technique in [1] and [3]). The localization obtained
this way is uniquely determined up to the symmetry of the field because
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Figure 3.1: A tracked region (painted black) and white scan-lines along its
edges. Here a green region is being tracked. s and e are the start and end-
points of the scan-line. p is the actual point to be checked for edge criteria,
and the points marked above, below, left and right, are its neighbors used
to determine the brightness around p.

no information about the two goal box colors is available. Nonetheless, the
method can proceed without it, as will be explained in the next chapter.

A drawback of this localization is that more false field-line points are
found than with the previously used localization, which tracks green regions.
It is also potentially slower since more pixels are processed. Even though it
would be possible to localize the robot by calibrating the goal colors only
(to break the field’s symmetry), there is still a need for calibrating the color
of the field. Without it, it would be impossible to identify obstacles on the
field.

3.3 Choosing Regions by Color Growing

The second step is to grow homogeneous color regions. It is not important
to start growing a region at a specific pixel, but choosing them intelligently
can accelerate the classification. This is achieved by building different sets
of starting pixels for each expected region. Subsequently, one pixel is chosen
at random from each set and separate color region growing processes are
started (see figure 3.3). The grown color regions are then passed along for
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Figure 3.2: Example of features found in the field-line contours. Here the
center circle, a T-junction and the inner and outer right penalty area corners
have been successfully detected. With these features the robot can localize
itself on the field.

further validation (see chapter 3.4). Different pixel criteria are required to
obtain the various pixel-sets used for the expected regions of the field, the
ball, and the goals.

Since the green field color usually covers a large area of the image, a
possible method to obtain the field pixel-sets would be to pick a certain
amount of randomly chosen pixels and assign them to the pixel-set of the
expected region they correspond to. Instead, pixels are gathered from the
field-line detection procedure which provides pixels that are close to a line,
but not on one. These pixels - excluding the ones corresponding to points
lying outside the field, are then assigned to the pixel-set of the expected
world region they correspond to (there are 10 such field-regions, see Fig.3.4).

A goal-box pixel-set consists of pixels corresponding to points lying be-
hind one of the two goal lines in the field-model. The two goal-box pixel-sets
are separated by the spatial location of the goals. It is decided later to which
goal-box the two sets belong (see chapter 3.4).

Since the ball can be small in the image and its position in general
unknown (even if the robot’s position is known), it pays off to pick the
pixel-set for the ball color-growing carefully in order to make its classification
faster. The procedure used therefore only considers pixels corresponding to
field-points (because the ball is on the field). It then checks if a pixel has
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Figure 3.3: Regions grown successfully for an expected ball region, one of
the expected field regions, and an expected goal region. The grown goal
region is enclosed by a white curved line, the ball’s by a red curved line and
the field’s by a green curved line.

either been classified as the ball color in a previous iteration of the calibration
procedure, or if it could be the center of an expected ball at that point. If
this is the case, the pixel is added to the ball pixel-set. Essentially this is a
form of pre-validation that verifies if a region starting from this pixel could
ever grow into the expected ball at this pixel. It does this by checking if
pixels along the axes of the expected ball ellipse are unclassified.

Growing a homogeneous color region works in the following manner:
Starting with a pixel p, neighboring pixels are inspected. If their color is
within a certain homogeneity threshold with respect to the color at p, they
are added to the color region. The neighbors of the newly added pixels are
inspected in the same manner, always comparing them to the color of the
first pixel p. The homogeneity thresholds are adapted automatically (see
chapter 3.5).

3.4 Validating Grown Color Regions

After picking one point from each pixel-set and growing separate color re-
gions (one region for the ball, ten regions for the field, and two regions for
the goals), it has to be verified that they belong to the corresponding ex-
pected regions. To ensure this, the regions have to pass through validation
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Figure 3.4: The 10 expected field regions.

criteria. The criteria are similar for each color class, and are based on the
following observation: if a grown color region r is totally inside and covers
an expected region of a color class C, then the colors in r are members of
C. The expected regions are defined assuming ideal conditions such as an
obstacle-free field and perfect self-localization.

In the case of the field color class, 10 expected regions were defined in
world coordinates using the current field-model (see Fig. 3.4). In accordance
with the general guidelines, a grown field-color region should lie entirely
inside one of the expected regions. After checking that the region fulfills
this criterion, it is verified that it covers enough of the expected region. In
the FU-Fighters implementation it is required that a field-color region covers
70% of the corresponding expected region, and that all of its points lie inside
it. If the criteria are not fulfilled, no colors from the region are added to the
field color class in this iteration.

In the case of the goal-box color classes, it is possible to use the field
line-model and the robot’s position to calculate at which angle in the image
a grown goal-box-color region is expected to appear. Furthermore, it is
known that this region cannot be inside any of the expected field regions. In
the FU-Fighters implementation it is required that a goal-color region lies
between the angle defined by the goal-box’s posts, and that it covers 70%
of the angle. Furthermore, the goal-box has to be clearly visible given the
current position of the robot, e.g. the expected angle to the left and right
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posts has to be sufficiently large. Also, no point of the region can lie in any
of the expected field regions. If the criteria are not fulfilled, nocolors from
this region are added to the respective goal-box color class in this iteration.

Once a grown goal-color region has been successfully validated, and its
colors have been associated with one of the arbitrarily chosen goal-boxes,
the symmetry of the field has been broken, and the sides can be labeled and
recognized. Future validated goal-color regions will therefore be assigned
to the correct goal-box color class. This is based on the assumption that
the robot does not de-localize and flip sides, while the illumination simul-
taneously changes to prevent goal-identification. However, since there is a
convention in RoboCup to paint one of the goals yellow, and the other one
blue, the FU-Fighters implementation compares a grown goal-color region
to a blue and a yellow reference color. It is then added to the class whose
reference color is closer to the region’s mean color. This automates the setup
of the robot and also increases the robustness of the classification.

In the case of the ball color class, an expected ball region in the image
has an elliptic form where the size of the minor and major axis depends
on the distance from ball to robot. The expected ball is represented by
storing ball-fitting ellipses at different distances from ball to robot. One
ellipse data entry consist of the pixel distance from the robot to the center
of the ellipse (the robot being in the center of the image), as well as the
minor and major axis of the ellipse, measured in pixels. In the FU-Fighters
implementation is is required that all pixels in a ball-color region be inside
the expected ball region, and that the area be more than 40% of the expected
area. Furthermore, the ball has to be encircled by pixels classified as the
field color class. This extra criterium was added to prevent human hands
from beeing classified as the ball. If the criteria are not fulfilled, no colors
from the region are added to the ball color class in this iteration.

3.5 Adaptive Thresholds for Color Growing

The thresholds for color growing are in general not the same for each color
class, and vary with lighting conditions. Furthermore, it is advantageous to
use various thresholds for the same color class in one and the same scene.
This is especially advantageous in the case of the field class, because it is
large and can therefore have wide variations in color homogeneity. Accord-
ingly, three separate sets of thresholds are deployed, one for each expected
region of the field, the ball and the goals. These sets are initialized with a
constant amount of random thresholds. The thresholds are then adjusted
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Figure 3.5: Grown regions which fail to meet the validation criteria. Pixels
of the goal-box and ball regions are outside the expected region, or the field
region does not cover a required percentage of the expected region.

with the help of the validation criteria outlined previously in chapter 3.4.
Essentially, this means decreasing the threshold if the region grown using it
was too big, and increasing it, if it was too small.

Before a region is grown, a threshold is picked at random from the corre-
sponding set. If a certain threshold was involved in a successful growing, it
“survives” and is still part of the set in the next iteration of the calibration
procedure. If a region growing has failed a certain number of times using the
same threshold, the threshold “dies” and a new randomly initialized thresh-
old takes its place in the set. Each time a region grown with a threshold is
too big, the threshold is decreased by a small random amount. If the region
is too small, the threshold is increased, and another try to grow a region at
the same point is made. The increasing of the threshold is continued until
the region is successfully grown, or grows outside the expected region.



CHAPTER 3. AUTOMATIC COLOR CALIBRATION 24

3.6 Handling of Multiple Color Class Member-

ship

Using the method presented in this work, it is possible for the same color to
be assigned to multiple color classes. This happens when colors belonging
to a color class are present in regions not belonging to the class. This is for
example the case when the blue goal is so dark that some colors in it also
appear in robots. In this case, a very dark-blue or black region is grown
inside the goal, which is found to correspond to the expected goal region.
The method then defines these colors as belonging to the blue goal color-
class even though they are encountered in robots or other dark objects as
well. This problem can occur with other color-classes as well, for example
between the orange ball color and the yellow goal color (although this is not
common).

The traditional solution, used by many teams in RoboCup, is to solve
these conflicts manually with a GUI-tool that allows you to exclude certain
color values from a color class. An automatic solution is to mark a color as
not belonging to a class if it occurs in an unexpected region. This has been
implemented in the FU-Fighters system with mixed results; the aforemen-
tioned effect of color values belonging to multiple color classes is reduced,
but this comes at the expense of ”banning” a color value forever from a
color class. This would be unfortunate if the membership of the color values
needed to be changed later, for example when the lightning changes. An-
other drawback is the computational cost of searching for wrongly classified
color values.

The following implementation is used in the FU-Fighters system. First,
the membership of the color values appearing in the actual image are checked.
Then, the corresponding pixels are projected into the world. Finally, the
pixels are checked for correct membership given the position. Those mem-
berships which do not fit the position are deleted from that color value and
marked as unsuitable.

A possible extension to this solution is to delete this markings after a
certain time. This requires a book-keeping system where each color value is
updated with a time stamp. When a high color resolution is used, such a
system needs a lot of memory and processing time. It has not been imple-
mented in the FU-Fighters system.

Another way of handling multiple membership is to ignore it in the
calibration system and deal with it in later processing steps. This is the
approach used in Juengel et al (see [6]). There, the yellow and the orange
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Figure 3.6: In this bright image the same color values are found on the field,
in the ball, and in the yellow goal. Therefore the same color value can be
assigned to multiple color classes.

color classes, which are sometimes hard to separate, were simply combined
into one color class. The object detection algorithms then analyse a color
transition and can determine if it is a green-orange or a green-yellow edge,
for example.
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Results

The method presented in this work is able to adapt to changes in illumination
in a few seconds. The method was tested on a FU-Fighters Mid-Size robot
which are equipped with a lightweight laptop having a Pentium III M 933
MHz processor, and 256 MB RAM. For the run-time tests of the method
the time it took to adapt to an abrupt change in illumination was recorded.

Fig.4.1 illustrates the performance of the method where the robot is close
to a border line and sees a large area outside the field. The classification (on
the right) was obtained after a few second with no previous classification.
Here the ball and the goals are too far away to be calibrated.

The scene used for the main run-time tests can be considered a standard
RoboCup scene with the ball in view, and a robot in the goal, except that
a foreign pink piece of paper is present in the field. Note that it will not
be classified since it does not fit any expected region. The results of the
classification can be seen in Fig.4.2. The first column shows the original
images. The second column shows a segmented image using the automatic
classification from the previous illumination setting without adjusting to the
new illumination (the first row has no previous classification). As can be
seen, under the new illumination the color segmentation is poor. The third
column shows a segmented image after adapting the classification from the
previous scene with the automatic calibration method. The runtime for the
adaptation for row 1-4 was: 0.5, 0.8, 2.0, and 2.9 seconds, respectively. The
current implementation does not try to match the field-regions inside the
goal (regions 1 and 10 in Fig. 3.4), and therefore its colors are not classified
in any of the scenes. The regions on the other side of the field are also not
classified since they are obscured, and hence can not be matched to the cor-
responding expected regions. The first row demonstrates the classification

26
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Figure 4.1: The classification (on the right) was obtained after a few second
with no previous classification. Here the ball and the goals are too far away
to be calibrated so only the field can be calibrated. The color code is: white
= unclassified, gray = field.

under a mixed neon - and indirect floodlight. All regions that are clearly
visible have been successfully classified. The same goes for the second row,
which displays a darker scene with neon lighting only. The third row shows a
classification under neon lighting, and with one floodlight directed down on
the field. Here the method fails to classify some of the brightest green colors
lying under the floodlight after 2.0 seconds, but after letting the method
run for about 12 seconds, the classification improves (not illustrated), with-
out managing to classify some of the extremely bright green colors. The
fourth and last row of images was captured under neon lighting and with
three floodlights directed down on the field. A successful classification of
this scene was obtained after 2.9 seconds. Note however, that the colors of
the inner penalty area are not classified. This is due to the fact that the
goalie is placed in the middle of it, and thereby cuts the homogeneous color
region in half. It can therefore not be matched properly to the expected
area of the inner penalty area.

A short video (2-3 sec.) from a second scene was used to compare the
automatic calibration to the previously used manual calibration. The num-
ber of color values assigned to color classes, were 46422 with the manual
calibration and 45804 with the automatic calibration. Ignoring wrongly

classified entries, this equals a 98.7% success rate in the automatic

calibration compared to the manual one. As can be seen in figure 4.3
the difference in the segmented image obtained with the manual and auto-
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Figure 4.2: Row 1 to 4 (counting from top to bottom): Original images on
the left, static classifications from previous illumination setting in the mid-
dle, and the result of the automatic classifications on the right. The CPU-
time it took the method to produce the automatic classifications (right),
starting with the classifications achieved from the prior illumination (mid-
dle) for row 1-4 was: 0.5, 0.8, 2.0, and 2.9 seconds, respectively. The color
code is: white = unclassified, gray = field, check-board-pattern = blue goal,
diagonal-pattern = ball.
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matic calibration is insignificant. If examined closely one can see that the
segmented image of the manual calibration contains less unclassified pixels
in the yellow goal and the ball as well as one the field border (the actual
implementation does not try to classify color regions grown on the field bor-
der). Another way of comparing the two calibration is by drawing the color
values in a YUV color cube. Figure 4.4 shows a few snapshots from the
color clouds resulting after each calibration method. In this image it can
also be observed that the manual calibration classifies slightly more color
values, therefore producing larger clouds in the YUV color cube.
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Figure 4.3: A comparison of the number of color values classified with the
automatic calibration against the number classified with the manual clas-
sification. Top: An image from the test video used for the comparation.
Center: a segmented image obtained with the automatic calibration. Bot-
tom: a segmentated image obtained with the manual calibration.
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Figure 4.4: Continuation of figure 4.3. The top three figures are snapshots
of the color values classified with the automatic calibration in the YUV color
space. The bottom three figures are the respective snapshots for the manual
calibration. One can see that the manual calibration produces larger color
clouds, especially for the red and yellow color class.
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Future Work and Summary

Another potential weakness of the method is that a color does not become
“outdated”, e.g. a color cannot loose a previous classification. This can
present a problem when the lighting is changed, for example from white neon
lighting to a more warm, yellow lighting. Now, colors that were previously
classified as the yellow goal can appear on the white field-lines. An approach
used in [9], is to incorporate a color decay factor.

A method for tuning the camera-parameters is presented in [8], and
could be combined with the method presented here to enable the robot
to operate in a wider range of lighting-conditions. The “ground truth”
(manually defined color classes) needed in that method could be provided
by the automatic calibration.

Since the two team colors magenta and cyan are not used by the FU-
Fighters vision-system they are currently not included in the automatic cal-
ibration process. Calibration of cyan and magenta could be done in the
following manner. First, calibrate colors with the current automatic cali-
bration method. Then, find the robots using the current object detection
system. Finally, search for a patch of magenta or cyan color in the expected
position. It is uncertain how accurately cyan and magenta could be cali-
brated with this approach. Also, as the number of color classes increases,
the chances of multiple color class membership increases as well.

As the method is based on comparing observed geometrical objects to
known objects, it is crucial that the distance function used to convert from
image to world coordinates is accurate. In the FU-Fighters system this
function is tuned manually which often results in erroneous transformations.
Reducing this error by automatically calibrating the distance function would
improve the performance of the automatic color calibration method.
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In this work a method that can be used for automatic color calibration of
autonomous soccer playing robots was presented. It is based on a color-less
localization of the robot, a geometric line-model of the field and a geometric
model of the ball. The method needs no manual calibration and can deal
with various difficult lighting conditions that change abruptly over time. It
can be integrated into existing systems and was used by the FU-Fighters
Mid-Size robots at RoboCup 2005 in Osaka. There the FU-Fighters Mid-Size
team got the second place, whereby the automatic calibration considerably
reduced setup-time and contributed to a more exact calibration.
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