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Abstract. We describe the omnidirectional local vision system devel-
oped for the RoboCup F180 league soccer team FU-Fighters. Our system
consists of a small video camera mounted vertically on top the robots.
A concave parabolic mirror placed above the camera reects the �eld
around the robot. The image is sent by a radio link to an external PC
for processing.
Our omnidirectional vision system can �nd the ball and detects the pres-
ence of other robots on the �eld. The walls of the �eld are also located
and used to determine the position of the robot. In order to be able
to process the video stream at the full frame rate the movement of all
objects is tracked, including the ball, the obstacles, and the walls of the
�eld. A global image analysis is used to initialize the tracking.
The key of our approach is to predict the location of color edges in the
next frame and to search for such color transitions along lines that are
perpendicular to the edge.

Introduction

We developed a robotic soccer team for the F180 RoboCup league, the FU-
Fighters, that took part in the competitions held at Stockholm and Melbourne
in the past two years. For RoboCup 2001 we decided to develop a new generation
of soccer robots based on local vision where each robot carries its own camera.

Three tasks have to be accomplished by the computer vision software that
analyzes the captured video stream: detecting the ball, localizing the robot, and
detecting obstacles. These tasks are non-trivial, since sensor noise, and variances,
such as inhomogeneous lighting are present in the images. The image analysis
needs to be done in real time, which is not easy, due to the enormous data rate
of video streams. Some teams need to reduce frame rate and resolution to match
the available computing power, however, such an approach leads to less precise
and less timely estimates of the game status, and ultimately to slow play. To
be useful for behavior control, the system also needs to be robust. Unexpected
situations should not lead to failure, but to graceful degradation of the system's
performance.

Local vision is the method used by most teams in the F2000 league as the
main sensor. Some of the successful teams adapted the omnidirectional vision
approach. The Golem team [4] impressively demonstrated in Melbourne that,



using an omnidirectional camera, suÆcient information for controlled play can
be collected. Another example for the use of omnidirectional cameras is the
goalie of the ART team [3, 6, 7]. Little is known about the implementation of the
computer vision software that analyzes the omnidirectional videos.

In our league, F180, only three teams tried to play in Melbourne with local
vision only. The limited game performance of these teams shows clearly, that
in the smaller form factor the implementation of a local vision system is more
challenging than in the F2000 league. The main reasons are that due to space
and energy constraints smaller cameras of lower quality must be used and that
less computing power is available on the robot. Recently, the OMNI team [5]
demonstrated controlled play with omnidirectional local vision at the Japan
Open competition. This team sends the video stream to an o�-the-�eld computer
that contains special purpose hardware for image processing.

The main idea of the paper is to implement a tracking system for the analysis
of the video stream produced by an omnidirectional camera that needs to inspect
only a small fraction of the incoming data. This allows to run the system at full
frame rate and full resolution on a standard PC.

The remainder of the paper is organized as follows: The next section de-
scribes the omnidirectional camera we designed for local vision. Then, a color
segmentation algorithm is presented that �nds transitions between given colors
along a line. Section 3 covers a radial search method that can be used for initial
localization. In Sections 4 and 5 the initial search for the ball and the robot is
detailed, respectively. Finally, the tracking system is described in Section 6 and
some experimental results are reported.

1 Omnidirectional Camera

For our omni-vision system we decided to use the chassis of the previous genera-
tion of robots and retro�t it with a small video camera and a mirror, as shown in
Fig. 1. We mounted a small PAL camera on top of the robot, directed upwards
and looking directly into a parabolic mirror. The mirror collects light rays from
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Fig. 1. Omnidirectional camera: (a) principle; (b) physical construction; (c) captured
image (see �g 2 for the color classi�cation of the pixels on the line)



all directions, reecting them directly into the pinhole of the camera. Before set-
tling for this mirror, we tried to use convex spherical and conical mirrors. The
concave mirror yields better results because the parabolic shape closely approx-
imates an ellipse. The ellipse has the property that light rays going through one
focus and reecting on the mirror, go through the other focus. If one places the
pinhole of the camera at the lower focus, then a good focused image is obtained
regardless of the distance of the objects. The mirror must be cut at the level of
the other focus, such that an image of the plane from the current position to
in�nity can be obtained. The parabolic shape of the mirror produces less dis-
tortions, as compared to a spherical mirror. Far-away objects appear larger and
are hence easier to detect.

In order to avoid carrying a large computer on the robots, the video stream
is transmitted to an external computer via an analog radio link.

2 Color Classi�cation and Segmentation

Image analysis in the RoboCup domain is simpli�ed, since objects are color
coded. Black robots play with an orange ball on a green �eld that has yellow
and blue goals and white walls. Thus, a pixel's color is a strong hint for object
segmentation. We utilize this hint by classifying the colors, that are captured
with 15 bit resolution, using a look-up-table (LUT). The classes are not exclusive,
since the LUT stores for each color and each class a bit that indicates that the
color can be found in images of that object class. Fig. 2 displays the classi�cation
of the pixels that belong to a line trough the �eld as oor, wall, ball, obstacle,
yellow and blue goal.

Since color classi�cation is noisy and not exclusive, it can not be used di-
rectly for object segmentation. We aggregate the classi�cation by locating color
transitions along line that are perpendicular to color edges as shown in Fig. 3.

Assume we have a location t 2 f0; :::; ng of transition. We de�ne two areas
Ia(t) and Ib(t) on both sides of t with prede�ned lengths na and nb, respectively.
Let A be the set of all color classes and let mi � A be the color mask of pixel

Fig. 2. Color classi�cation of the pixels belonging to the line in Figure 1(c).



Fig. 3. Search for color
transitions: (a) ideal tran-
sition; (b) noisy transition
with inspection areas; (c)
update of cb(t). It is only
necessary to look at the
pixel that comes in and
the one that falls out of
inspection area Ib. Both
pixels have the color class
b, thus cb remains un-
changed.

(a)

(b)

(c)

i, where i = 0; 1; :::; n � 1. Let a; b 2 A be the color classes of the searched
transition. Now the numbers of pixels ca(t); cb(t) in each inspection area that
have the appropriate color mask can be speci�ed by:

ca(t) = jfi 2 Ia(t)ja 2 migj; cb(t) = jfi 2 Ib(t)jb 2 migj:

Next, we de�ne, that a transition is present at position t, if and only if ca(t) and
cb(t) are greater or equal to some prede�ned minimum numbers mina;minb.

The task now is to calculate t. As depicted in Fig. 3(c) it is suÆcient to look
at the two outer pixels of an area for it's color count. The left-to-right search for
a transition takes O(n) steps, where n is the number of pixels.

Combined with an assembly coded Bresenham algorithm [1], that computes
the pixels that belong to a line, over 45; 000 lines at a length of about 300 pixels
can be analyzed per second, using a 900 MHz Pentium-III processor.

3 Radial Search and Hough Transformation

The radial search sends lines radially from the robot's perception origin and
searches for transitions from the oor to the speci�ed color class of an object.
Fig. 4(a) shows the result of searching the transitions from the oor to the walls.
This method not only can be used to �nd the walls, but also to �nd the goals and
the obstacles. The advantage is that it �nds parts of the objects that are near
the oor, which is important to calculate the correct distance to the objects.

The Hough Transform [2] is a standard tool in image analysis that was de-
veloped to detect straight lines but has been extended to detect any geometric
shape that can be speci�ed by a �xed small number of parameters. It uses a
discretization of the parameter space to accumulate indications into bins. The
task of recognizing a shape in an image is transformed to the task of recogniz-
ing a point with maximal accumulation in parameter space. Since it is a global
transformation, it can detect objects that are incomplete and noisy.

To give an example that will be used for initial robot localization later, sup-
pose that we want to �nd the walls of the playing �eld. We �rst determine several
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Fig. 4. Wall detection with the radial method: (a) seeking transitions to the wall; (b)
parameter space.

points of the walls by applying the radial method, searching for transitions from
the green oor to the white wall, as shown in Fig. 4(a).

All the points found are transformed to world coordinates, using the in-
verse distance function. The corresponding sinusoidal curves are accumulated
in parameter space. Fig. 4(b) shows the result of accumulation. The three local
maxima correspond to the three visible walls.

4 Initial Ball Search

Finding the ball is of essential importance for successful play. Although it seems
to be an easy task, detecting the ball clearly demonstrates the diÆculties of
computer vision. Figure 5 shows some images of the ball. Its appearance varies
greatly in size, shape, and color. Furthermore, it can be easily confused with
robot markers. For reliable ball detection it is necessary to look for clusters of
pixels of appropriate color. To �nd these clusters a fast region growing technique
can be applied. The algorithm starts with a region consisting of a single seed
pixel, having the color class of the ball, and investigates all its neighbors. If they
have the appropriate color and have not yet been assigned to any region, they
are added to the region and again their neighbors are investigated.

Fig. 5. The ball's appearance varies in color and shape and is similar to robot markers.



Additional information is needed to detect the ball. One observation helps
to discriminate it from spurious clusters: Consider the line that reaches from a
pixel of the spurious cluster to the perception origin. Since the color markers are
on the top of the robots and the sides of the robots are black, the line passes
�rst through the black sides before it reaches the green oor. For the ball there
is a similar e�ect, caused by shadows, but here the dark parts on the line are
much smaller. So the idea is to look for a transition from ball color to the oor
color, allowing small parts of other color classes (shadow) between them.

The detection of the ball can be summarized in three steps: (a) determine all
clusters of the ball's color class and their sizes, (b) discard all clusters for which
no transition to the oor can be found, and (c) choose the biggest cluster. Goals
can be detected in a similar way.

5 Initial Robot Localization

The task of initial robot localization is to determine the robot's position and ori-
entation on the playing �eld, given a captured omnidirectional image. Although
there might be approaches for behavior control that need to know only relative
positions of objects like the ball and the goals, we think that a global localization
is important for intelligent play.

Two di�erent methods have been developed for localizing the robot. The �rst
is fast, but is only applicable when both goals can be found and yields wrong
results when a goal has not been detected correctly. The second method is more
exible and robust, not relying on the correctness of single extracted features,
but also is slower. In practice, one tries to apply the �rst method and if it fails
the second method is used.

5.1 Direct Localization

Direct Localization is only applicable
when both goals have been detected (see
�gure) The idea is to determine the an-
gle Æ0, because knowing the distance of
the blue goal, the robot's position and
viewing direction can be calculated im-
mediately. It is important to understand
that Æ0 is di�erent from Æ, since the
distance function is not linear. To ob-
tain Æ0 the vectors a and b that reach
from the perception origin to the two
goals �rst have to be mapped to local
world coordinates. If aw and bw de-
note these mapped vectors, we de�ne
cw := aw � bw. Now Æ0 is the angle be-
tween cw and bw.

Hence, the position p of the robot lays on a line at an angle of Æ0 to the line



connecting the two goals. Knowing the distance to the blue goal determines p.
The viewing direction also is known, because the angle � at which the yellow
goal appears in the image in respect to the robot's viewing direction is preserved
by the optical mapping. Of course, for constructing the position and viewing
direction either of both goals can be used. In practice one will choose the closer
goal, since its position is more likely to be precise.

5.2 Localization using Evidence Aggregation

The second localization algorithm consists of two steps. The �rst step computes
a plausibility value for several positions where the robot could be. In a second
step these positions are investigated in the order of their plausibility, until the
correct position has been found. For determining the plausibility of each position
the evidence accumulation technique is applied. If we recognize e.g. the yellow
goal in the image and can estimate its distance from the robot, we have an indi-
cation that the robot must be on a circle around the yellow goal. To accumulate
indications we divide the playing �eld into m� n cells that represent plausibili-
ties, which are initialized to zero.

If the distance to goal x is denoted by rx, then a
semi-circle with radius rx around goal x is added
to the grid. The circles will be drawn more fuzzy
for great distances, as the estimation of rx be-
comes worse. Suppose, we can estimate the dis-
tance to the blue goal as well as to the yellow
goal. Than we can draw two circles that may
accumulate as shown in the �gure. The intersec-
tions of the circles can be found by seeking for
the cells with maximal accumulation.

Unfortunately, cases may occur, in which only one goal can be seen, e.g. due
to occlusions. Thus, another feature needs to be used to indicate the robot's
position: the best visible wall. To detect this wall, we use the radial search
followed by a Hough Transform, as described above. Choosing the maximum

(a) (b) (c)

Fig. 6. Using the closest wall for localization: (a) robot next to a wall; (b) detected
wall points transformed to world coordinates; (c) grid with goal-circles and wall-lines.



activation in the parameter space, yields the desired result. Since it is not known,
which wall has been detected, for all walls parallel lines are drawn on the grid
at the perceived distance (see Fig. 6).

After all entries have been made to the grid, local maxima are candidates
for robot locations. These candidates are evaluated by a registration procedure
(see next section) that computes a quality measure for a model �t. Evaluation
starts with the highest maximum. By zeroing cells in the neighborhood of eval-
uated candidates, it is made sure that candidates are signi�cantly di�erent. The
candidate with the best evaluation is used to initialize the tracking.

6 Tracking Objects

Tracking of color edges and blobs is key to the low computational load of our
vision system. The idea is to utilize the fact that the world changes slowly, as
compared to the frame rate. This makes it possible to predict the location where
certain features will appear in the next frame. If most of these features are
found close to their predicted positions, only small parts of the image need to
be touched. The di�erences between the measured locations and the predictions
can be used to update estimates of the parameters of a world model.

Our system employs a 2D-model of the playing �eld, with the the robots and
the ball on it, as shown in Fig. 7. On the playing �eld we can �nd the "seeing"
robot (gray), three other robots, and the ball.

For tracking the �eld, the 2D-model is matched sequentially to the images,
seeking the transitions from the oor to the walls and from the oor to the
blue and yellow goal. Therefore for each line of the border of the playing �eld,
orthogonal equidistant lines have been added to the 2D-model, referred to as
tracking lines in the following. The group of all lines that belong to the same
line of the border will be referred as tracking grids.

The endings of each tracking line specify two color classes, according to the
expected colors at the position of the line. For instance, the color classes of a
tracking line belonging to the transition from the green oor to the yellow goal
has the color classes green and yellow.

Fig. 7. Model seen from an exterior point of view.
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Fig. 8. Tracking of the �eld: (a) enhanced CAD model; (b) transitions found.

Each tracking line is mapped into the image, using the inverse camera func-
tion. This is done by mapping the endpoints of each transition line into the
image and then reconnecting them with a line. Of course this is not correct,
because the mapped lines would be curves, but if the lines are not too long,
the error will be small. Next, the pixels along the lines are searched for a color
transition. In �gure 8 lines for which a transition has been found are marked
with a black dot at the position of the transition. It can be seen that the model
does not �t precisely to the playing �eld in the image, due to a rotation of the
robot. Sometimes false transitions may been found, e.g. at �eld lines or at the
secondary �eld wall. They need to be detected as outliers that must be ignored.

The next step is to calculate a 2-D rigid body transformation that brings the
model is correspondence with the found transitions. In the case here, the model
should be rotated slightly to the left. To determine the model's transformation,
�rst a rotation and translation is calculated for each track grid independently.
Then the results are combined to obtain a transformation for the whole model.

Next, the CAD-model, including the track grids, is rotated around its center
and translated according to the estimated parameters. Repeating the seek for
transitions and updating the positions of the model while perceiving a sequence
of images yields the desired result: the pose of the playing �eld seen from the
robots point of view is tracked and so the position and orientation of the robot
on the playing �eld is known by a simple coordinate transformation.

To reduce the variance of the estimated pose, a Kalmann �lter can be used
to combine the measurements from di�erent frames. Figure 9(a) shows how the
playing �eld is tracked while the robot rotates.

During initial search candidate positions have to be evaluated using the track-
ing mechanism. Given a position of the robot on the playing �eld and an image
where we can detect one of the two goals, we can easily calculate the orientation
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Fig. 9. Tracking of (a) the �eld while rotating; (b) ball and obstacles.

of the robot. As described above, the �eld can now be projected into the image
and the ratio of found transitions can be used as quality measure for model �t.
This quality indicator is also used during tracking to detect situations when the
tracking fails and the initial search is needed to localize the robot again.

The system does not only track color edges, but also color blobs, as the ball
or obstacles. The blobs are searched for only in small square windows around
their predicted positions, as shown in Fig. 9. Again, to compute the predictions,
Kalmann �lters can be used. If an object cannot be found within its rectangle,
initial search is started to �nd it again.

Conclusions

We implemented a local vision system for the F180 league that uses an omni-
directional camera. The system �ts a world model to the input by �nding and
tracking color edges and blobs. It is able to process a full resolution, full frame
rate video stream on a standard PC. We plan to use the extracted information
about the status of the game as input for a behavior control system. Further, we
want to fuse multiple local views to a single global view. Currently, the image
analysis is done on an external PC. As semiconductor technology advances, it
will be possible to integrate a small computer on-board the robots.
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